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ABSTRACT 

Millions of dollars are spent annually for removing ice and snow from paved 

surfaces using conventional techniques such as deployment of snow plowing equipment 

and use of deicing chemicals that are neither economical nor environmentally friendly. 

Alternative approaches such as producing superhydrophobic (super water-repellent) 

pavement surfaces and implementing electrically-conductive heated pavement systems, 

or even merging these two technologies to produce hybrid heated pavement systems, can 

alleviate many of the problems associated with conventional ice and snow removal 

techniques. 

In this study, superhydrophobic concretes – including hot mix asphalt (HMA) and 

portland cement concrete (PCC) – and electrically-conductive asphalt matrices, including 

electrically conductive asphalt (ECAM) mastic and electrically-conductive cement paste 

(ECCP), were fabricated, and their characteristics evaluated. Water repellency of 

superhydrophobic HMA and superhydrophobic PCC was characterized through static 

water contact angle (WCA) measurements, and the frictional properties of these coated 

concrete were characterized using a microtribometer and a British pendulum tester. The 

electrical and thermal properties of ECAM and ECCP were characterized through volume 

resistivity measurements and active infrared thermography (IRT). These evaluations 

performed on superhydrophobic concretes and electrically-conductive matrices revealed 

that superhydrophobic HMA and superhydrophobic PCC are capable of repelling water, 

and possibly of repelling ice/snow. It was also found that ECAM and ECCP can generate 

enough heat for melting ice and snow at below freezing temperatures. Although it was 

found that ECCP can generate more heat than ECAM, this depends somewhat on the 
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design requirements for selecting a matrix for binding aggregate systems together to 

result in a concrete (either HMA or PCC), implemented in a heated pavement system, 

that can efficiently melt ice and snow. 
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CHAPTER 1.    INTRODUCTION 

Background 

Ice and snow on the surface of airport pavements has always been a source of concern, 

and, millions of dollars are spent annually for removing ice and snow from pavement surfaces. 

Since the beginning of “all-weather” aircraft operations there have been landing and aborted 

takeoff incidents or accidents during each winter because of slippery and icy conditions on 

airport pavement surfaces. To overcome such problems, it is imperative to develop new 

technologies that can more effectively and efficiently remove or prevent the formation of ice and 

snow on asphalt cement concrete (ACC) and portland cement concrete (PCC) paved surfaces. 

Some of the newly emerged or emerging techniques for this purpose include application of 

superhydrophobic coatings on pavement surfaces to prevent ice formation or curb snow 

accumulation or implementation of electrically-conductive asphalt concrete (ECAC) or 

electrically-conductive portland cement concrete (ECON) for melting ice and snow or preventing 

their formation or accumulation.   

ACC and PCC surfaces can be coated with nano-based materials to impart 

superhydrophobicity (super water-repellency) and icephobicity to these types of concrete. Such 

properties can be achieved by creating surface coatings made from low surface energy materials 

with embedded hierarchical structures. While there are many available low surface energy 

materials and many methods for synthesizing surface coatings for producing 

superhydrophobic/icephobic ACC and PCC, according to the reported literature, producing 

superhydrophobic coatings on ACC and PCC has not yet been attempted. Superhydrophobic 

ACC and PCC surfaces must also be able to maintain skid resistance when there is no ice/snow 
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present on these surfaces; such technology would be useless if it causes skidding problems 

during warm seasons. 

Some recent studies have highlighted the potential for enabling electrically-conductive 

ACC and PCC through the addition of conductive materials (carbon fibers, graphite powder, etc.) 

to conventional ACC and PCC for electrical heating-based snow and ice removal applications. 

Such conductive materials could be used to improve the electrical conductivity of a pavement 

layer or improving the heat conductance of the pavement itself. The reported studies also seem to 

indicate that optimization of electrically-conductive asphalt concrete (ECAC) or electrically-

conductive portland cement concrete (ECON) mix design to achieve the desired conductivity 

properties for practical applications without loss of mechanical performance and compaction 

properties is a highly challenging task.  

Objective 

The primary objectives of this research are as follow: 

• To synthesize superhydrophobic ACC and PCC surfaces that can repel moisture 

and reduce ice adhesion, then investigate their tribological properties such as 

friction at microscale. 

• To develop electrically-conductive asphalt mastic (ECAM) and electrically-

conductive cement paste (ECCP) and characterize their electrical and thermal 

properties to investigate the heat generation efficiency of these matrices (both 

ECAM and ECCP) binding aggregate systems with respect to producing self-

heating ACC and PCC. 

The overall goal of this study is to investigate and produce materials to be used for 

producing water/ice-repellent and self-heating pavements to introduce state-of-the-art 
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methods/materials for mitigating winter-related maintenance problems in critical areas such as 

airports, bridge decks, etc. It is hoped that the findings of this study will suggest suitable 

substitutes for costly and non-environmental-friendly methods, such as deployment of snow 

removal equipment and use of deicing chemicals that are conventionally practiced for removing 

ice and snow from pavement surfaces. 

Dissertation organization 

This journal paper-based dissertation is organized as follows: 

Chapter 1 includes a summarized background, research objectives, and dissertation 

organization. 

Chapter 2 provides a state-of-the-art annotated bibliography, including a thorough 

literature review on different nano-materials, nano-coatings, coating methods, electrically-

conductive materials, and methods for synthesizing and characterizing electrically-conductive 

asphalt-based materials. 

Chapter 3 presents the first journal article: Superhydrophobic coatings on asphalt 

concrete surfaces: toward smart solutions for winter pavement maintenance that discusses 

methods for producing superhydrophobic coatings on ACC surfaces using spray deposition 

techniques, varying dosage rates of the selected low surface energy materials sprayed, and 

changing spray deposition duration. This article also describes the techniques used for 

characterizing water repellency and skid resistance of the synthesized coatings. In this article, the 

water repellency of coatings was characterized in terms of static water contact angle (WCA) 

measurements, with the tribological behavior of coatings measured with a microtribometer. 

Chapter 4 presents the second journal article: Superhydrophobic coatings on Portland 

cement concrete surfaces that discusses methods for producing superhydrophobic coatings on 

PCC, then explains the characterization method used for evaluating water repellency and skid 
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resistance of the synthesized coatings using different low surface energy materials. In this article, 

water repellency was characterized by static WCA measurement and skid resistance was 

evaluated using a British pendulum tester with friction values reported in the form of British 

pendulum numbers (BPNs). 

Chapter 5 presents the third journal article: Temperature-related anisotropic behavior of 

electrically-conductive asphalt mastic that describes a procedure for synthesizing single-phase 

and two-phase ECAMs and explains the volume resistivity characterization, highlights the 

influence of temperature change on volume resistivity measurements, and explains in detail the 

resistive-heating heat generation process in ECAM . 

Chapter 6 presents the fourth journal article: Electrical and thermal properties of cement 

paste and asphalt mastic modified by electrically-conductive carbon-based materials that 

describes the method for synthesizing single-phase and two-phase matrices (both ECAM and 

ECC), compares the electrical behavior of ECAM and ECCP modified with the same carbon-

based materials (at the same dosage rates), and discusses heat generation and propagation 

phenomena in both ECAM and ECCP. 

Chapter 7 provides a summary along with conclusions and recommendations for future 

studies. 
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CHAPTER 2.    LITERATURE REVIEW 

This chapter provides a state-of-the-art annotated bibliography, including a thorough 

literature review on different nano-materials, nano-coatings and coating methods for producing 

superhydrophobic and icephobic ACC and PCC surfaces. This chapter also includes an extended 

literature review on electrically-conductive materials and methods for synthesizing and 

characterization of electrically-conductive asphalt-based materials. In addition to the information 

provided in this chapter, each journal article included in this study will have its own literature 

review, specific to its particular scope. 

Review on Superhydrophobic ACC and PCC 

Background and Motivation 

Presence of ice and snow on the surface of ACC and PCC pavements has always been a 

source of concern for both users and agencies in charge of maintaining pavements.  Millions of 

dollars are spent annually on removing ice and snow from roadways [1]. In airports, since the 

beginning of “all weather” aircraft operations, there have been numerous aborted landing and 

takeoff incidents or accidents each winter because of slippery and icy conditions on aprons, 

taxiways, and runways. 

Ice accumulation on airplanes, power lines, wind turbines, etc. is another important 

concern for agencies that has drawn the attention of many researchers during the last decade.  

Conventional current approaches for ice/snow removal include spraying large quantities of anti-

ice agents on paved areas and deploying a great number of snow plowing vehicles, etc. These are 

costly and time consuming [2], and research is underway around the world to develop pavements 

resistant to freezing-induced damages.  
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For mitigating problems associated with ice/snow formation on paved surfaces, 

superhydrophobic coating techniques [3]–[6] have received recent attention as alternatives to 

traditional ice and snow removal practices for reducing ice adhesion. The benefits of 

superhydrophobic coatings could also be combined with those of heated pavement systems in a 

hybrid heated pavement system (HPS) framework, potentially yielding greater water and ice 

repellency. Preventing or reducing ice/snow formation/accumulation is more desirable than 

fighting against their build-up, and a time-efficient method for mitigating problems associated 

with ice/snow accumulation is to use superhydrophobic coatings with icephobic properties. 

An HPS houses electrodes inside the pavement surface, and the potential for moisture-

related damage to ACC or PCC surfaces should be eliminated.  There are severe downsides to 

water penetration, including electrode corrosion potential and other moisture damage potential of 

ACC and PCC such as increasing ice adhesion on the surface. Prevention of water penetration 

would essentially increase the lifecycle of ACC and PCC pavements and imbedded electrodes in 

HPS.   

Hydrophobicity 

A surface is classified as hydrophobic if it repels water and as hydrophilic if it absorbs 

water [2], [6]. The magnitude of cohesive forces within water molecules and adhesive forces 

associated with the interaction between water and surface determine the wettability of a surface. 

If cohesive forces within the water molecule are greater than adhesive forces enveloped between 

water and surface, water droplets will bead up without wetting the surface. 

Two distinct models are proposed to explain the roughness effect [7]. On one hand, 

according to Wenzel model, roughness increases the surface area of a solid and geometrically 

improves its hydrophobicity. The Cassie model, on the other hand, explains that air trapped 

beneath the droplets can lead to further enhancement of hydrophobicity. Tiny entrapped air 
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pockets reduce the solid-liquid contact area, making the surface superhydrophobic.  If these two 

aforementioned roughness induction methods are applied on certain types of hydrophobic 

materials with low surface energy, the final products will be superhydrophobic. 

Static WCA (i.e., θCA in Figure 2.1) can be used to characterize the wetting behavior of a 

surface; it is the angle a static water droplet makes with the surface, and, based on measured 

WCA, surfaces are classified as [8]: (a) hydrophilic (0 < WCA < 90), hydrophobic (90 < WCA < 

150) and superhydrophobic (150 < WCA < 180). 

 

Figure 2.1  Schematic of static WCA measurement and interfacial forces between solid, liquid 
and vapor phases [8]. 

In addition to the WCA, the work of adhesion can also be considered as a criterion for 

showing how water-repellent a nano-coated ACC or PCC can be [2], [6].. The lower the work of 

adhesion, the more ice/snow repellent a surface becomes. The work of adhesion can be 

calculated using Equation (1).   
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𝑊𝑊𝐴𝐴  =  γ𝐿𝐿𝐿𝐿 (1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  (1) 
 
Where: 𝑊𝑊𝐴𝐴 = work of adhesion at contact angle 𝑐𝑐, and γ𝐿𝐿𝐿𝐿 is the surface tension of water, 72.8 

mN/m. 

Hydrophobicity and Icephobicity 

Icephobicity has long been a subject of debate [9] (Hejazi, et al. 2013), and icephobic 

surfaces are believed to both delay the formation of ice nuclei and reduce adhesive forces (both 

shear and normal) between ice and surface [9]–[12]. According to the literature, 

superhydrophobic coatings can possess ice-repellent properties [13], and early studies of 

icephobic surfaces have focused on droplet-on-liquid interactions that can affect ice formation.  

Methods for Producing Superhydrophobic Surfaces 

Several physical and chemical modifications have been developed in various disciplines 

to identify suitable methods for producing superhydrophobic surfaces. Methods for synthesizing 

superhydrophobic surfaces include wax solidification, lithography, polymer conformation, vapor 

deposition, sublimation, plasma techniques, etc., [14]. According to Young [15], who did a 

fundamental investigation to identify suitable superhydrophobic materials for ice-and snow-free 

airport concrete pavements, a layer-by-layer (LBL) spray deposition technique can be used for 

producing superhydrophobic ACC and PCC. However, research still continues to find other 

scalable coating materials and coating methods for producing ice-repellent coatings on the 

airfield paved area surfaces . The findings of Young during his Ph.D. studies [15] had a huge 

impact on investigating the feasibility of fabricating superhydrophobic ACC and PCC in this 

study [2], [3], [6]. 
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Review on Electrically-conductive Asphalt-based Materials 

Background and Motivation 

According to FAA AC 150/5200-30D, Airport Winter Safety and Operations [16], 

presence of contaminants such as ice, snow, or slush on paved areas of airfields causes hazardous 

conditions that can lead to airplane incidents or even accidents. Moreover, snowstorms often 

reduce airport traffic volume through flight delays or cancellations, or, in the worst case 

scenario, airport closure [16]. To mitigate such winter-related problems, an airport operator 

attempts to select an appropriate time-saving approach to minimize the costs and efforts 

associated with ice and snow removal from the surface of runways, taxiways, aprons, etc. [16]. 

One such method previously mentioned in this study is the use of superhydrophobic coatings. 

Another alternative is to use a HPS made of ECAC that can be used for anti-icing and de-icing 

purposes by generating heat through resistive heating. 

Conventional asphalt concrete is not electrically conductive but rather highly resistive 

owing to the high electrical resistivity of its components that can include aggregate, asphalt 

binder, and mineral filler. Electrical resistivity of asphalt concrete can be significantly reduced 

through the addition of conductive materials such as powders, fibers, and solid particles [17]. 

Experimental studies on ECAC reported in the literature indicate that optimization of ECAC mix 

design to achieve high conductivity (for pavement de-icing applications), and at the same time 

maintain adequate mechanical properties, is a challenging task warranting thorough and detailed 

experimental investigation [18], [19]. According to the existing literature [17],  conductive 

materials incorporated into ECAC can broadly be categorized as: (a) powders, e.g., graphite or 

carbon black (CB); (b) fibers , e.g., carbon fiber (CF), steel fiber, or carbon nano-fiber (CNF) 

(SF); (c) shavings, e.g., steel shaving (SS); and (d) solid particles (substituting for coarse 

aggregate in part) . e.g., steel slag (SS) and marconite.  Considering the wide variety of available 
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conductive materials, it is of paramount importance to consider conductive materials in terms of 

their associated costs and rate them with respect to their potential for achieving economic and 

efficient heated pavements based on literature review results, experimental results, and material 

supplier recommendations. Through such a rating system, the highest ranked conductive 

materials can be selected for development of ECAC. It is also important to note that steel-based 

conductive materials should not be given priority in the evaluation process, since they generate 

several concerns, e.g., producing foreign object debris (FOD), causing safety-related issues, 

availability, etc., associated with their use in airport pavements. 

It is also inferred that the use of large quantities of a single conductive material to achieve 

higher conductivity in asphalt mixtures is not only cost-prohibitive, but can also degrade  

mechanical performance. To overcome such problems, the combined use of conductive powders 

and fibers in asphalt concrete can potentially lead to achieving a cost-effective and well-

performing ECAC with adequate electrical and mechanical properties [20]. 

Although several mixing procedures have been randomly explored by previous research 

studies, there is no systematic guidance or specification available on optimal mixing technology 

for ECAC. One study [17], for example, indicated that a desirable mixing procedure would be 

one that can disperse conductive fillers uniformly in asphalt mixture without excessively 

increasing the mixing temperature and asphalt content. Two mixing procedures, dry and wet, 

have typically been employed for preparing ECAC specimens at the lab. In the dry mixing 

procedure [21], conductive materials are either mixed with dry aggregate before adding asphalt 

binder or added directly to the asphalt and aggregate mixture. The wet mixing procedure [22], on 

the other hand, entails introducing the conductive materials into the asphalt binder matrix, then 

adding the modified binder into the aggregate for final mixing. Comparing these two mixing 
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methods can provide useful information regarding their practicality for achieving the ultimate 

goal, optimum field implementation.   

The quality of conductivity enhancement in asphalt concrete can be evaluated by 

resistivity measurements. Among different methods for measuring resistivity, the two-probe 

method is more common for measuring the conductivity of ECAC [18], [23], [24]. Based on the 

literature, the resistivity of asphalt concrete has been measured at different temperatures, 

including 15ºC [23], 20ºC [18],  and 25ºC [24]. Asphalt is a highly temperature-dependent 

material [25]–[27] and its behavior in terms of resistivity should be studied over a wider 

temperature range. Moreover, ECAC, in the context of ice and snow melting, should be able to 

maintain high electrical conductivity at low  temperatures.  

Concepts behind Electrical Conductivity 

Resistance and resistivity 

Resistance (R) is an electrical property defined as the ratio of applied voltage to the 

electric current. The resistance of an object depends on its dimensions and its materials’ 

composition. With respect to dimensions, increasing length increases the R value and increasing 

the cross-sectional area section results in reduction of the R value. To eliminate the effect of an 

object’s geometry, one can alternatively consider resistivity (ρ) that is representative of intrinsic 

property of materials. The electrical resistivity of asphalt-based materials can be obtained using 

Ohm’s law [18]: 

 

ρ =  𝑅𝑅𝑅𝑅
𝐿𝐿

                                                                                                                                           (2)                      

 

Where: 
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ρ = electrical resistivity measured in Ω cm, 

R = electrical resistance measured in Ω, 

S = electrode conductive area measured in cm2, and 

L = the distance between electrodes within or on the surface of concrete. 

Conductance, denoted by G, is the inverse of resistance, i.e., 1/R.  

Within the context of composite materials, there are two types of resistance: composite 

and contact [28]. Composite resistance is defined as the resistance of individual fibers that 

depends on their material properties and aspect ratios. Contact resistance, on the other hand, 

deals with passage of electrons between adjacent fibers that are in contact (Figure 2.2). Such 

contact resistance solely depends on the common surface area between the fibers in contact, 

because the matrix is almost electrically-insulating. 

 

Figure 2.2  Mechanism of electron passage through common contact area of fibers. 

Percolation threshold 

Percolation theory, in essence, is used to define how a given set of regularly or randomly 

positioned sites is interconnected in a space [29]. Based on this theory, at some critical 

probability - referred to as percolation threshold -, an interconnected network of sites is formed 
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that causes the system to percolate at the span of the material under study [30]. Percolation 

theory has been utilized in a broad range of applications, such as spread of disease in a 

population, flow of a fluid in a porous medium, quarks in nuclear matter, etc.. Percolation 

theories, in the context of conductivity, are applied to explain insulator-to-conductor transitions 

in materials composed of conductive filler(s) and an insulating matrix [31]. The sudden transition 

(from insulator to conductor) within these materials is evidence of a percolation threshold [30].  

When a small amount of conductive material is added within an insulating matrix, they 

are completely isolated and electrons cannot travel through the added conductive materials 

rendering the composite to continue as an insulator. However, an increase in percentage of 

conductive materials allows them to contact one another.  

The greater the amount of conductive materials, the greater the amount of contact, and 

hence the greater the conductivity of the composite (Figure 2.3). Addition of conductive 

materials causes a gradual increase in conductivity,  i.e., a gradual decrease in resistivity. When 

the conductive material content reaches a threshold value, a first few continuous conductive 

paths will be formed within the composite, enabling the travel of electrons through the sample 

[32]. Beyond this percolation threshold, addition of conductive materials results in gradual 

development and spreading of a conductive network in all three dimensions [32]. In other words, 

at this stage the addition of more conductive materials results in a sharp decrease in electrical 

resistivity. Adding conductive materials can continue up to an optimum value at which point the 

conductive materials are in contact with one another in all directions and many conductive 

networks and electron passages are formed [32]. As a result, after this stage, adding more 

conductive materials would have little effect in decreasing the resistivity, and of course would 

not be economical. 
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Figure 2.3  Effect of conductive materials’ volume content on the quality of conductivity in 
composite systems. 

Tunneling effect 

The electron conduction mechanism in semiconductors depends on [33], [34]: intrinsic 

conductance of the conductive fillers, the direct contact of conductive fillers, and the traveling of 

electrons, at close proximities, between conductive fillers explained through the tunneling effect. 

Tunneling, a quantum-mechanical effect, occurs when electrons pass through an insulating 

material or barrier. In the context of classical physics, there is no way for electrons to travel 

through such a barrier if they do not have enough energy, but in the quantum-mechanical world, 
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unlike in classical physics, electrons possess wavelike properties. These waves taper off quickly 

rather than merely ending abruptly when they hit a wall or barrier. It is believed that electron 

tunneling, sometimes called hopping, is highly dependent on the barriers of chemical 

composition, temperature [35], and, most importantly, distances between the conductive fillers 

[36], [37]. According to Simmons [38], the resistivity of tunneling in a low-voltage range can be 

explained by the following equation: 

 

𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  ℎ2

𝑒𝑒2√2𝑚𝑚𝑚𝑚
 exp �4πd

ℎ √2𝑚𝑚𝑚𝑚�                                                                                          (3)                                    

 

Where: 

Ρtunl = electron tunneling resistance, 

h = Planck’s constant, 

d = tunneling distance, 

m= the mass of an electron, 

λ = the barrier height of insulator, and 

e= the quantum of electricity. 

Referring to Simmons’ equation, one can easily see that distance – among other variables 

- has a strong influence on tunneling resistance (Error! Reference source not found.), or 

alternatively, conductivity [39]. 
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Figure 2.4  The influence of distance on tunneling conductivity [39]. 

Increasing Temperature in ECAC through Electrical Currents 

ECAC temperature can be increased either through induction heating [32], [40]–[42] or 

conduction heating [20]. Conduction heating is used for melting ice and snow on the surface of 

areas paved with asphalt concrete [20], while induction heating is used for accelerating the self-

healing process in asphalt concrete. Unlike induction heating, in conduction method, electrodes 

are in direct contact with ECAC [20]. As a result, for heat conduction, electrodes can be 

embedded in ECAC. It is worth noting that all the underlying concepts of conductivity 

enhancement in asphalt concrete are the same for both conduction and induction heating. 

Electrical Resistivity Measurement in Asphalt Mixtures 

Wu, et al., [24] measured volume resistivity at room temperature of 25ºC using a two-

probe method. They used stainless steel disk-shaped electrodes with diameters of 120 mm and 

thicknesses of 25 mm. To ensure perfect contact between the asphalt concrete specimens and the 

electrodes, they used a dispersed type of graphite to fill the electrode-specimen gaps. Wu, et al., 

[24] reported contact resistance between the electrode and asphalt concrete to be less than 1Ω, a 
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negligible value compared with the measured resistance values, greater than 100 Ω, obtained 

from their specimens. 

Garcia, et al., [18] performed resistivity measurements at room temperature, i.e. 20 ºC. 

They used nickel electrodes and connected them at the short ends of test specimens. Dry graphite 

powder was utilized to fill the gaps between each specimen and the electrodes to guarantee 

perfect contact. Garcia, et al., reported a contact resistance between the graphite and electrode of 

less than 0.1 Ω, much lower than the resistance of each specimen that was generally higher than 

20 Ω. Garcia, et al., used a multimeter for measuring resistance values below 36 ×106 Ω and  a 

resistance tester for measuring resistance values higher than 36 ×106 Ω. 

Wang, et al., [23] used the two-probe method for measuring the resistivity of asphalt 

concrete specimens at a room temperature of 15 ºC. They used highly conductive silver paint to 

stick two copper plates/electrodes to the ends of each cylindrical specimen. Wang, et al., used a 

UNI-T modern digital multimeter to measure resistance values below 40 ×106 Ω, and a 

resistance meter for measuring values higher than 40 ×106 Ω. They reported that contact 

resistance between the two electrodes was lower than 1 Ω, much lower than the resistance values 

obtained from the specimens, generally greater than 0.1 ×106 Ω.  

Huang, et al., [19], following the standard two-wire method, used a Keithley 2000 digital 

multimeter for measuring electrical resistivity of high-conductivity asphalt concrete. For 

measuring the resistivity of conventional asphalt concrete or asphalt concrete specimens with 

low conductive-material volume content, they used the external voltage power method because 

the Keithley 2000 digital multimeter was not able to measure such high resistance values. 

Following the external voltage power method, the electrical resistance can be calculated 

using the following formula [19]: 
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𝑅𝑅0  =  − 𝐿𝐿2
𝐿𝐿1− 𝐿𝐿2

 𝑅𝑅𝑠𝑠𝑡𝑡                                                                                                                   (4)                                                                                                         

 

Where: 

R0  = is the calculated value of resistance, 

V1  and V2 = are the voltage values that can be precisely measured by the Keithley 2000, and 

Rst = is the resistance of a standard resistor, 22 M Ω. 

Huang, et al., covered the electrical contact areas of each specimen with a highly 

conductive silver paint, then glued copper tapes onto the painted areas so that a perfect contact 

between the specimen and each electrode could be guaranteed [19]. Huang, et al., did not report 

any contact resistance value.  

Cong, et al., [43] used the two-probe method for measuring the resistivity of 90×10×10 

mm specimens made of bitumen modified with electrically-conductive materials, e.g., different 

types of CB. They used silver paint for sticking copper wires to each specimen’s ends (10×10 

mm cross section), and measured the resistance at a room temperature of 20 ºC.  

Temperature is another factor affecting resistivity, and it can considerably influence 

electrical conductivity of materials made of asphalt [44]. 

Conductive Materials Used for Increasing the Electrical Conductivity of Asphalt Mixtures 

Carbon fiber 

Carbon fiber produced from either poly acrylonitrile (PAN) or pitch precursors [45] is 

very compatible with asphalt concrete because, like asphalt, it is made of carbon. The melting 

point of carbon fiber is approximately 1000ºC, making it suitable for use in hot-mix asphalt 

(HMA) [46]. In addition to chemical and thermal compatibility, the high tensile strength of 

carbon fibers contributes to an increased tensile strength in asphalt concrete [46], including 
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resistance to thermal cracking [47], [48]. With regards to stiffening effects, carbon fibers 

increase the fatigue life of asphalt concrete [46]. It has been reported that the presence of CF can 

increase the fatigue life of asphalt concrete by approximately 10-25 orders of magnitude [49]. It 

is believed that CF is the best conductivity enhancement material for use in asphalt concrete [24] 

because high aspect ratio carbon fibers produce the longest conductive paths compared with 

other types of conductive fillers [24]; a fiber-to-fiber contact mechanism facilitates the 

conductive network formation and hence increases the electron transmission rate through the 

asphalt concrete [24]. Although carbon fiber, with a resistivity of approximately 10-3 Ω cm [24],  

can considerably increase the electrical conductivity of asphalt mixtures, it has one major 

drawback, i.e., poor dispersion; CF has a high tendency to agglomerate into small or large 

clusters [24]. Preparation of a well-dispersed CF modified asphalt concrete with more than 8% 

CF is not an easy task, especially if conventional mixing techniques are followed [24]. It is 

reported in the literature that high aspect ratio CFs, even at very low volume contents, can 

substantially increase the electrical conductivity [50].   

 
Steel fiber and steel wool 

Fatigue life of asphalt concrete can be extended by 10-25 times by addition of steel fibers 

(SFs) [49]. SF, with a resistivity of 7×10-3 Ω cm  [41], has not been widely used in asphalt 

concrete compared with its application in portland cement concrete (PCC). Both SF and steel 

wool (SW) have been used in asphalt mastic [51] and asphalt concrete for increasing electrical 

conductivity and generating heat through induction [32], [40], [52]. Liu, et al., [32] stated that 

incorporation of SW into porous asphalt concrete increases its conductivity, and that percolation 

threshold and optimum conductive materials content can be reached at volume contents of 2.54% 

and 3.81% respectively. 
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Graphite 

Graphite has a basic two-dimensional hexagonal crystalline structure, but the shape and 

size of graphite can vary according to the source from which it is obtained from and/or its 

manufacturing process [53].   Graphite is classified into flake type, amorphous, artificial, ultra-

high surface, etc.[54]. Flake graphite has resistivity values ranging from 0.03 Ω.cm to 0.05 Ω.cm 

[54]. Amorphous  graphite has a 0.13 Ω.cm resistivity [54]. Artificial graphite has a 0.047 Ω.cm 

resistivity [54]. Artificial nanoplatelet graphite has resistivity values ranging from 0.184 Ω.cm to 

0.289 Ω.cm [54].  It is believed that flake type graphite is the best candidate among these types 

[53]. Graphite absorbs oil and hence results in increasing the optimum asphalt content [50]. 

Graphite has a carbon-based layered structure with weakly bonded layers, rendering the graphite 

lubricant and slippery [50]. Because of its intrinsic lubricating characteristic, graphite, if used 

beyond a certain limit, can significantly influence the mechanical strength of asphalt concrete 

[50]. Graphite reduces the indirect tensile (IDT) strength [19], Marshal stability [50], resilient 

modulus [50], and rutting dynamic stability of asphalt concrete [50]. To enhance the conductivity 

of asphalt concrete using graphite, a substantial amount of this conductive material must be 

added to the asphalt mixture, significantly influencing the performance of HMA [19]. 

Carbon black 

CB is an amorphous carbon solid produced by deposition of solid carbon particles that 

are formed in a gaseous state [54]. CB - a material with the finest particle size among all the 

common industrial carbons - is manufactured by thermal cracking or combustion of a 

hydrocarbon-based fuel under reducing conditions [54]. Most formed CB particles have 

nanometer sizes [54]. CB, with a typical resistivity value of 0.341 Ω cm, can be used as a 

conductivity enhancing agent [55]. It is believed that CB, like bitumen,  helps improve anti-

aging, and conductivity (both thermal and electrical) of polymer-based matrixes at relatively low 
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dosages [56]. CB increases the complex modulus and increases the elasticity of asphalt mixtures 

[57]. CB can be used for stabilizing asphalt against oxidative degradation [58]. It is believed that 

CB with its higher surface area can also more effectively serve as an anti-oxidation agent [58]. 

Increasing the concentration of CB results in increasing the stiffness in asphalt binder [58].  

Aluminum chips 

Aluminum, with a resistivity of 2.65×10-6 Ω.cm, is one the best electrically-conductive 

materials, but when aluminum is solely incorporated in asphalt concrete in the form of chips, it 

does not effectively improve the electrical conductivity of concrete [53]. It is believed that 

aluminum is easily oxidized when exposed to air and its conductivity therefore decreases [53]. It 

is possible to use other conductive materials such as microscale steel fibers and graphite together 

with aluminum chips to obtain good electrical conductivity in asphalt concrete [53].   

Steel slag 

Steel slag is a byproduct of the stainless steel manufacturing process [59]. Production of 

three tons of stainless steel yields one tone of stainless steel slag [60], a relatively huge amount. 

For example, in Europe, twelve million tons of steel slag are produced on an annual basis [61].  

Steel slag used as coarse aggregate improves the mechanical properties of asphalt 

concrete [59]. Replacing up to 75% of limestone coarse aggregate by steel slag improves the 

mechanical properties of asphalt concrete, including indirect tensile strength, resilient modulus, 

fatigue life, rutting resistance, and creep modulus [62]. If steel slag is used in stone mastic 

asphalt (SMA), it can make the SMA more cost-effective in terms of having accessibility to 

appropriate aggregate [63], [64]. It is recommended to replace steel slag only with either fine or 

coarse aggregate, because hot mix asphalt (HMA) containing 100% steel slag is more susceptible 

to bulking and formation of higher voids [65] due to the angular shape of steel slag. [65].  It is 

claimed that asphalt concrete mixtures containing more than 30% steel slag exhibit improved 
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skid resistance [62], and it is also reported that steel slag has the ability to retain heat more than 

other types of aggregates conventionally used in asphalt concrete [59]. Utilizing steel slag 

aggregate as the only conductive material in asphalt concrete, can improve the electrical 

resistivity by approximately one order of magnitude [59]. 

Multiplex ECAC  

ECAC conductivity is highly dependent on the electrical resistivity of the conductive 

materials used, i.e., the lower the resistivity of the conductive materials the higher the electrical 

conductivity of the asphalt concrete [24].A combination of conductive fillers can result in a 

remarkably higher conductivity compared with single powder fillers at the same total content 

[24].  It is also believed that a combination of graphite and carbon fiber in asphalt concrete can 

result in an effective self-monitoring system for controlling strain [50].  The amount of 

conductive filler used in the mix can be calculated based on the volume percentage of the binder 

phase constituting of bitumen and conductive filler(s) [24], i.e., mastic. 

 ECAC for Anti-icing and De-icing Purposes 

ECAC can be used for winter pavement maintenance purposes [20] as an alternative 

approach (Figure 2.5) to conventional ice and snow removal techniques such as the use of 

deicing chemicals, deployment of  snow removal equipment, etc. Deicing chemicals have 

detrimental effects on pavements [66], and the use of snow plowing equipment is time-

consuming and costly. ECAC can serve as a heater [20] that, through resistive heating, is capable 

of melting ice and snow in an efficient manner.   
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Figure 2.5  Snow melting capability of ECAC. 

Wu, et al., [20] prepared a test slab made of two-lift asphalt concrete with each layer 

having a thickness close to 50 mm. They simulated the snow/ice melting process on a bridge 

deck paved with ECAC. In that study, Wu et al., used AC-13 aggregate gradation in the surface 

asphalt course, and used AC-16 aggregate gradation in the conductive asphalt layer (second 

layer). They made the third layer (base) with portland cement concrete. For producing ECAC 

(second layer), they added SF, CF and graphite at 7% of total asphalt mixture weight. Steel slag 

was also substituted for basalt in the ECAC. Wu, et al., used a thermal insulating layer between 

the base layer and the ECAC and kept the ECAC layer at a constant temperature of -15°C for 24 

h. They then applied 200 volts to the ECAC specimen and performed thermography for a 

duration of 30 minutes. They reported the temperature at one specific point, and based on their 

observation, the temperature rose from -15°C to 16.6°C. 

Derwin, et al. investigated the performance efficiency of Snowfree ®, a commercial 

name for their ECAC system [67]. Snowfree ® was formulated by Superior Graphite Co., and 

developed with the cooperation of the FAA Technical Center and Flood Testing Laboratories 

[67]. The Snowfree ® system uses a combination of graphite, asphalt, and electricity to melt ice 

and snow [67].  
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According to Derwin, et al., [67] a demonstration section was installed in November 

1994 at Chicago O’Hare Airport on a heavily-used departure taxiway (Figure 2.6). The system 

was powered by a 120-volt electrical source operated automatically with the aid of embedded 

temperature and moisture sensors [67]. Durability, safety, and performance of the Snowfree ® 

system was measured in a pilot study over a three-year and a half period.  

 

 

Figure 2.6  Schematic of the Snowfree ® system installed on a taxiway in O’Hare International 
Airport [67]. 

Derwin, et al., reported that cables, aconductive asphalt layer (ECAC), and a surface 

asphalt concrete layer were placed during an 18-hour time window [67].  The heated pavement 

section covered an area with dimensions of 70 ft×90 ft. The total system power requirement was 

approximately 300 kW [67]. Derwin, et al., reported that the spacing between each two-cable 

pair (electrodes) was 16 ft, and the system was designed to operate at 120 V, with each cable 

having a current carrying capacity of 830 A.  
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After the test section at O’Hare International Airport was ready to operate, a current 

leakage test was conducted by Underwriters Laboratories, and no safety-related concerns were 

identified [67]. The HPS was able to successfully melt a 2-inch snow layer in early March. The 

test section at the O’Hare International airport could increase the temperature by up to 9 degrees 

in 2.5 h [67]. The temperature of the Snowfree ® HPS increased at the rate of 3-5 degrees per 

hour during the period in which Derwin, et al., conducted their study. 

As mentioned earlier, the HPS test section constructed at the O’Hare International 

Airport was made of asphalt concrete. The ECAC layer was designed to meet FAA P401 

specifications for the paved areas of airfields. According to Derwin, et al., using the correct 

proportions of graphite and aggregate helped in maintaining the durability of the ECAC 

Snowfree ® HPS equal to that of normal asphalt concrete [67]. According to a report prepared by 

Derwin, et al., in 2003, the test section had been in place and exposed to traffic-related and 

environmental stresses for four years, and the study revealed no differences, in terms of presence 

of cracks, between heated and normal asphalt concrete.  

ECAC for Anti-icing and De-icing Purposes 

The ultimate goal of this study is to produce highly efficient superhydrophobic coatings 

and an ECAC capable of generating enough sufficient heat that, when these technologies are 

combined, the result would be a hybrid heated pavement system capable of fighting ice 

formation and snow accumulation far better than each individual technology. Figure 2.7 presents 

a schematic of a hybrid heated systems that combines ECAC, embedded hydronic pipes, and a 

superhydrophobic coating. 
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Figure 2.7  Schematic of a hybrid heated pavement system [67]. 
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CHAPTER 3.    SUPERHYDROPHOBIC COATINGS ON ASPHALT CONCRETE 
SURFACES: TOWARD SMART SOLUTIONS FOR WINTER PAVEMENT 

MAINTENANCE 

A journal paper published in Transportation Research Record: the journal of 

Transportation Research Board 

Ali Arabzadeh1, Halil Ceylan2, Sunghwan Kim3, Kasthurirangan Gopalakrishnan4 and 

Alireza Sassani5 

Abstract 

Millions of dollars are spent annually for ice or snow removal from roadways and airport 

paved surfaces in cold regions. Snow or ice on such paved areas can cause traffic accidents and 

financial loss through flight cancellations or delays.  For mitigating such winter pavement 

maintenance issues, the use of superhydrophobic (super water-repellent) coating techniques is 

gaining attention as a smart and cost-effective alternative to traditional snow and ice removal 

practices. This study focused on creating, characterizing, and evaluating innovative 

superhydrophobic coatings on asphalt concrete surfaces for ice- and snow-free flexible-pavement 

applications. The Layer by layer (LBL) method was utilized to create asphalt concrete surface 

coating with the polytetrafluoroethylene (PTFE) as a well-known super ice/water-repellent 

material. Superhydrophobicity and skid resistance of the coated asphalt concrete surface were 

characterized in terms of the water-contact angle, the work of adhesion, and the coefficient of 

friction at the micro-texture level. These properties were evaluated for different test variables, 
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including spray times and dosage rates of PTFE, under a statistical design based experimental 

test program. The measurement results indicate that uses of the LBL method for spray depositing 

the PTFE particles and the micro-tribometer for measuring coefficient of friction in micro-

texture level are promising methods for creating and characterizing superhydrophobic coatings 

on asphalt concrete. The results of statistical analyses indicate that spray time and dosage of 

PTFE significantly affect the ability of a coated flexible pavement to be 

icephobic/superhydrophobic and skid resistant. 

Introduction 

Research is underway around the world to enhance pavements resistant to freezing-

induced damage. Each year America’s harsh winters cost the nation’s economy billions of 

dollars in snow and ice removals, weather damage to roadways, and revenue lost by closed 

businesses.  More than 76,300 flights in 2014 were cancelled because of snow and ice 

accumulation on the airport surfaces, leaving millions of travelers in the lurch and costing 

airports and airlines millions in revenue (1). For mitigating the problems associated with 

ice/snow formation on paved surfaces, both heated-pavement systems (2, 3) and/or 

superhydrophobic (super water-repellent) coating techniques (3) have received recent attention 

as alternatives to traditional snow and ice removal practices. The former is used for melting the 

ice or snow on the surface, while the latter can be used for preventing or curbing ice or snow 

formation. Moreover, the benefits of superhydrophobic coatings could be combined with those of 

heated pavement systems in a hybrid heated pavement system framework, yielding potentially 

greater water and ice repellency. 

A surface is called superhydrophobic when the contact angles of droplets deposited on it 

are equal to or bigger than 150° (4). In such a case, the water droplets do not tend to wet the 

surface and can be easily rolled off the surface either when they are blown or when the surface is 
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tilted. Superhydrophobicity is achieved through a combination of surface roughness and low 

surface energy (5). Two distinct models are proposed to explain the roughness effect (6). On one 

hand, according to Wenzel model, roughness increases the surface area of the solid, 

geometrically improving the hydrophobicity. The Cassie model, on the other hand, asserts that 

air can remain trapped beneath the droplets, leading to further enhancement of hydrophobicity. 

Tiny entrapped air pockets reduce the solid-liquid contact area making the surface 

superhydrophobic.  If these two roughness induction methods are applied to certain types of 

hydrophobic materials with low surface energy, the final products will be superhydrophobic. 

Polytetrafluoroethylene (PTFE) with a water-contact angle of 108° (7,8) is a hydrophobic 

material with low surface energy; PTFE particles created with diameters at submicron scales 

using an appropriate deposition technique can readily become superhydrophobic  (7). 

Ice formation on airplanes, power lines, wind turbines, etc. is an important concern for 

agencies and over the last decades has drawn the attention of many researchers trying to remedy 

associated problems. Likewise, ice formation on pavements has been a major source of concern, 

and various conventional approaches have been employed for ice/snow removal, including 

spraying large quantities of anti-ice agents on paved areas and deploying many snow-plowing 

vehicles, etc., costly and time-consuming methods. Since preventing or reducing ice/snow 

formation/accumulation is more desirable than fighting against their build-up, a more economical 

and time-efficient method for mitigating problems associated with ice/snow accumulation is to 

use superhydrophobic coatings with icephobic properties (9, 10, 11, 12, 13). After coating the 

pavements with such materials, the rate of ice formation decreases, and because of the low work 

of adhesion of super ice/water repellent materials, the bond strength developed between the 
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ice/snow and the coated pavement surface decreases, so that by applying small mechanical forces 

the ice/snow can be removed. 

To the best of our knowledge, there is a very limited body of literature dealing with 

applying nanomaterials on asphalt concrete to make it ice/water repellent. The first such attempt, 

using wet methods, used a copolymer fluoroacrylate previously modified with CaO nanoparticles 

was sprayed over the asphalt concrete, and the results revealed that the coated asphalt concrete 

was able to curb the formation of ice on the surface (14). In addition to making a surface 

superhydrophobic, PTFE is one of the well-known materials for reducing ice adhesion strength 

because of its low surface energy and chemical stability (15). While PTFE’s icephobicity has 

been widely investigated on different substrates like plastic (16) and aluminum (17) for 

decreasing ice formation on outdoor structures like ground wires, phase conductors of overhead 

power lines, aircraft wings and fuselages, telecommunication antennas, and conductors (18.19), 

the ice/water repellency of PTFE has never been evaluated for asphalt concrete. 

 After super water-repellent (superhydrophobic) materials has been applied on a 

pavement surface, skid resistance must be controlled. The main intention of applying these 

materials on the paved areas is either to curb the formation of ice/snow or facilitate their 

removal. However, the application of nano-materials will be of no avail if they endanger 

passengers by making the roadways/runways more slippery under dry conditions. There are two 

components affecting tire-pavement friction (20): the adhesion developed between the pavement 

surface and a tire, and the aggregate micro-asperities penetrating into the tire rubber. The former 

develops due to electrostatic attraction between the rubber molecules and the asperities on the 

pavement surface, while the latter is the result of rubber deformation hysteresis. The asperities of 

the pavement surface are classified into three orders: micro-texture, macro-texture, and mega-
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texture (20). Micro-texture, including the aggregate mineralogy and bitumen texture, is classified 

as corresponding to irregularities between 0.005 and 0.3 mm; a harsh pavement surface has an 

average micro-texture depth of 0.05 mm. Macro-texture - attributed to the size, angularity, shape 

and distribution of coarse aggregate - is classified as corresponding to irregularities between 0.3 

and 4.0 mm; a pavement is considered rough if the average depth of macro-texture is greater than 

1.0 mm. Mega-texture is classified as irregularities greater than 4.0 mm; mega-texture deals with 

major surface irregularities like cracks and potholes. It is believed that micro-texture is the most 

important among these three orders of roughness (21, 22). Moreover, pavement friction is 

governed by micro-texture at low speed, while both micro-texture and macro-texture are 

responsible for skid resistance at high speeds.  

While a modified British pendulum test can be performed to measure the skid resistance 

of asphalt concrete samples at micro-texture level in laboratory (23), to characterize skid 

resistance of a nano-coated substrate, the use of devices providing higher resolution in measuring 

the coefficient of friction (COF) can yield more accurate and reliable results. The COF measured 

on the coated and uncoated cut surface of asphalt concrete can be quite representative of the skid 

resistance over coated and uncoated flexible pavements, respectively; COF measured at micro-

texture level makes contributions to skid resistance at both low and high speeds, while the 

physical properties of aggregate are the predominant factor at high speeds whether or not the 

surface is coated.  

In this study, a statistical design-based experimental test program was developed to create 

and evaluate superhydrophobic coatings on asphalt concrete for ice- and snow-free flexible 

pavement applications. The Layer by layer (LBL) method was utilized to coat the asphalt 

concrete specimens/substrates with PTFE nano-particles using different spray times and variable 
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dosages of PTFE. The coated substrates’ superhydrophobicity was evaluated by measuring the 

water contact angle, and the COF was then measured for both the coated and uncoated 

substrates. To this end, a micro-tribometer based COF measurement method, another novel 

feature of this research, was designed and used. Finally, statistical analyses were conducted to 

determine significant parameters affecting superhydrophobicity and skid resistance of the coated 

asphalt concrete substrates. The findings of this study will be discussed to provide some 

guidance on actual implementation of the use of superhydrophobic coated asphalt concrete for 

ice- and snow-free flexible pavement applications.  

Materials and Methodology 

To investigate the effect of different variables on the superhydrophobicity and skid 

resistance of nano-coated asphalt concrete substrates, a statistical design was developed and 

performed prior to the start of experiments. The selected variables were spray times (3, 6, 9 and 

12 seconds) and dosages (10, 20, 30 and 40%) of PTFE. As the result of this statistical design, 16 

disk-shaped asphalt concrete substrates were prepared. Each asphalt concrete substrate was 

divided into four quarters for the sake of obtaining replicates. Three replicates were used for 

coating and one used for control purposes, i.e., forty-eight (16×3) samples were coated and 16 

(16×1) samples were used for control purposes. Each coated sample’s superhydrophobicity was 

evaluated by measuring the water-contact angle and the skid resistance of each sample was 

measured using a micro-tribometer. 
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Preparation of Asphalt Concrete Substrates 

The asphalt concrete samples used in this study consisted of limestone, with a gradation 

(See Figure 3.1) consistent with Superpave mix design and Federal Aviation Administration’s 

(FAA) advisory circular (24), and bitumen at optimum content. The physical properties of both 

the limestone and the bitumen are presented in Table 3.1.    

 

Figure 3.1  Aggregate gradation. 

Table 3.1  Aggregate and bitumen properties. 

Aggregate Specific gravity (g/cm3) Absorption (%) 

Limestone 2.76 1.44 

Asphalt binder Specific gravity (g/cm3) Penetration value (0.1mm) 

PG58-28 1.028 75 
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Using a gyratory compactor, mixtures with a diameter of 10 cm and a height of 15 cm 

were compacted in a cylindrical mold, achieving a 4% air void in the Superpave gyratory 

compactor. After compaction, a diamond table saw was used to make 5 cross-sectional cuts 

through each cylindrical asphalt concrete specimen to obtain four 1cm-thick substrates. To 

minimize effects of compaction-related non-uniformities adjacent to the ends, disk-shaped 

specimens were obtained from the core of each cylindrical sample. Again, each specimen was 

cut into four quarters. Hereinafter, a quarter disk-shaped asphalt concrete specimen will be 

referred to as an asphalt concrete specimen/substrate. 

Coating the Asphalt Concrete Substrates 

There are different methods, including layer by layer (LBL), wax solidification, 

lithography, polymer conformation, vapor deposition, sublimation, plasma technique, and others, 

for synthesizing the superhydrophobic surfaces (25). Because of the asphalt concrete non-planar 

surface, the specimens used in this study were coated using the LBL method (25). To achieve 

LBL coating, a two-part epoxy resin dissolved in xylene was first sprayed for three seconds on 

the top surface of each asphalt concrete specimen. Two-part epoxy was used for adhering the 

PTFE to the asphalt concrete substrate, after which PTFE dispersed in acetone was sprayed over 

the epoxy resin. PTFE was added to the acetone based on different weight percentages of epoxy 

resin. 

The epoxy (EP 1224), acquired from ResinLab, consisted of two parts: part A - a polymer 

resin - and part B - a curing agent. For coating each asphalt concrete specimen, 10 mL of part A, 

5 mL of part B and 15 mL of xylene were introduced into a beaker. The obtained batch was 

magnetically stirred for 5 minutes at 500 rpm at ambient temperature. Hereinafter, this mixture is 

referred to simply as epoxy. After the stirring time was over, the epoxy was immediately 

introduced into a spray gun (Figure 3.2a) set up for epoxy, and immediately sprayed over an 
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asphalt concrete substrate for three seconds. In order to eliminate the hardening effect of the 

epoxy over time, the remaining amount in the paint cup was discarded and, for each spray 

deposition, a fresh batch was prepared 

Note that this research highlights the application of superhydrophobic materials on 

asphalt concrete. Zynol® MP 1300 PTFE obtained from DuPont has a melting point of 325-342 

°C and an average particle size of 12 microns. This product was dispersed in acetone at different 

dosage levels; the dosages were based on the percent weight (10, 20, 30 and 40%) of the two-

part epoxy. PTFE at each dosage, was introduced into acetone to obtain a 50-mL mixture, the 

mixture magnetically stirred for 15 minutes at 500 rpm at ambient temperature, then immediately 

introduced into a spray gun specifically dedicated to spraying the PTFE/acetone mixture. The 

mixtures of acetone and PTFE were sprayed on the asphalt concrete substrates for time durations 

of 3, 6, 9 and 12 seconds (Figure 3.2a). It should be mentioned that two separate spray guns for 

spraying PTFE and epoxy were used to prevent contamination of the spray materials with one 

another. 

Note that, Figure 3.2b depicts two different scenarios that might occur during the PTFE 

and epoxy deposition. If the dosage of PTFE is low and the spraying time too short, either the 

amount of PTFE nanoparticles sticking to the surface will be very small or the PTFE 

nanoparticles will sink into the epoxy. When the spraying time is too long and the dosage of the 

PTFE particles is high, some nanoparticles will accumulate on the surface without binding to the 

substrate, and the nanoparticle deposition will be uneconomical. 
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Figure 3.2  LBL deposition method: (a) spray gun set up for spraying the epoxy and the PTFE 
and (b) deposition of nanoparticles when the amount of PTFE is low (i) and high (ii). 

Magnifying and Capturing the Water Droplets 

To measure the contact angle, 4 µL water droplets, using a micropipette, were deposited 

on three spots on the surface of each coated specimen. The droplets were big enough to enable 

the deposition yet small enough to decrease the effect of gravity on their shapes. While it was 

possible to obtain smaller droplets by evaporating 5 µL droplets under ambient conditions for 40 

minutes to obtain 0.3 µL water droplets over the specimens (25), this approach was difficult to 
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control. Rather than using an evaporation method, after deposition the 4 µL droplets were 

allowed to relax for 30s to reach equilibrium (26), then magnified and imaged by a high-

magnification Sony camera. Before capturing the droplets’ images, it was ensured that the source 

of light located around the lens of camera emitted an appropriate intensity of light. This level of 

illumination guaranteed obtaining images with high contrast so that solid-liquid (SL) and liquid-

gas (LG) interfaces could easily be distinguished. Tangent lines were then drawn on the two 

aforementioned interfaces so that the water contact angles could be easily measured.  Figure 3.3 

illustrates the test setup used for magnifying and capturing the water droplets to measure the 

water contact angles. The test was performed under controlled environmental conditions of 25° C 

and relative humidity of 60%. 

 

 

Figure 3.3  Set-up used for measuring the contact angles. 
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Data Collection for Measuring the Coefficients of Friction 

Coating the asphalt concrete with PTFE to make it water repellent was just the first step 

in this study. Before coating a runway or roadway with superhydrophobic coatings, it is 

necessary to evaluate skid resistance, because if vehicles slide on the coated pavements, spraying 

PTFE will be to no avail.  

In the current state of practice, according to ASTM E274, the skid resistance of asphalt 

concrete is usually measured at 65 km/h using the locked-wheel method (27). According to 

FAA’s advisory circular, the skid resistance of asphalt concrete can be measured at either 65 or 

95 km/h using continuous friction-measuring equipment (CFME) (24).  

One of the most important contributions of this study was measuring the skid resistance 

at the surface of nano-coated asphalt concrete using a micro-tribometer. The COF values of the 

coated samples were investigated by performing ramp load tests with a ball-on-flat micro-

tribometer. It is worth noting that there were other available methods for studying micro-

tribology such as: block-on-ring (28), pin-on-disk (29), etc. A probe (steel ball) with a tip radius 

of 2.55 mm was fixed on a probe arm. The sample was mounted on the sample stage and moved 

horizontally with a DC motor. The load on the probe arm was applied by lowering the vertical 

stage. Frictional and normal forces were measured with semiconductor strain gauges mounted on 

the probe arm. All the movements and data collection efforts were controlled with a computer 

and a data acquisition system connected to the micro-tribometer. A schematic diagram of the 

device used for measuring the COF is presented in Figure 3.4. 

For data collection, a code was written in the LabView® environment; the probe arm 

applied a variable normal load - starting from 20 mN and ending at 45 mN - along a 10-mm 

distance. The speed of the lateral stage was 5 mm/s during application of an increasing normal 

load. The data were logged along three paths for each specimen.  
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Figure 3.4  Schematic of the ball-on-flat micro-tribometer; (a) side view and (b) top view.    
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Results and Discussion 

Contact Angle Measurements 

Using the sessile-drop and tangent line method - among the available methods (25), the 

static contact angles of the three deposited water droplets were measured with an on-screen 

protractor (Figure 3.5a). The sessile-drop method is the most commonly-employed technique for 

measuring the contact angle of droplets on liquid repellent surfaces, and it is always coupled with 

digital image analysis (30). In this technique, a liquid droplet of a known volume is gently 

deposited on the surface from above and the droplet profiles captured using a high-resolution 

camera. Tangent lines are drawn on the SL and LG interfaces, and the contact angle is measured. 

After performing measurements using this method, the three measured values were averaged for 

each specimen. It is worth noting that each specimen had three replicates on each of which three 

water contact angle measurements were performed. The averaged values for each spraying time 

and PTFE dosage are presented in Table 3.2.  To depict the behavior of larger droplets 

resembling rain droplets in terms of size, a portion of paved asphalt concrete was coated with 

PTFE using the LBL method (Figure 3.5b). Note that in Figure 3.5b the water droplets form a 

spherical shape on the coated side, i.e., they do not tend to wet the surface. However, on the right 

side not coated with superhydrophobic material, the water cannot form a spherical shape and it 

wets the surface. 

 



www.manaraa.com

46 
 

 

 

Figure 3.5  Water droplet-asphalt concrete interaction; (a) an example of water contact angle 
measurement for three droplets and (b) the behavior of water droplet on the coated (left) and 
uncoated paved asphalt concrete (right).  

A statistical analysis of variance test (ANOVA) was conducted on forty-eight averaged 

water contact angles (See Table 3.2). For the selected confidence level of (1-α) = 0.05, a spray 

time with probability (P) of 0.0002 became the most significant factor. It is worth noting that in 

the ANOVA analysis method a factor becomes significant if its measured P-value becomes less 

than a selected confidence level, i.e., the smaller the P-value the more significant the factor. The 

percentage of PTFE also turned out to be important with a P value of 0.016.   
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Table 3.2  Measured contact angles (degrees). 

 
Spray 

Time (s) 
PTFE (%) 

10 20 30 40 
Ave.1 SE2 Ave. SE Ave. SE Ave. SE 

3 125 8.3 152 5.4 155 2.6 150 4.8 
6 156 2.9 157 3.1 156 2.5 155 1.7 
9 161 3.2 154 5.8 165 2.5 158 2.1 
12 156 9.0 156 3.9 161 1.6 166 1.5 

Note:  1Ave stands for the average and 2SE stands for the standard error. 
 
It is important to note that, in Table 3.2, superhydrophobicity is achieved at a 6-scond 

spray time for all different percentages of PTFE, and increasing the spray time from 3 to 6 

seconds resulted in a proportional increase in hydrophobicity. Increasing the spray time to more 

than 6 seconds did not significantly increase the superhydrophobicity for different percentages of 

PTFE except for 40%.  

The highest contact angle of 166° was achieved at a spray time of 12 seconds and a PTFE 

percent of 40. While the reason for such a high contact angle can be attributed to the thorough 

distribution of nanoparticles over the sample, it should be kept in mind that, for the purposes of 

ice/snow removal from the pavement/runway, achieving 150-degree contact angles is sufficient 

(14). Increasing the amount of PTFE by either increasing the spray time more than 6 seconds or 

the dosage of PTFE to more than 20% is not an economical approach.  

The reason for obtaining low hydrophobicity (i.e., the lowest contact angle of 125°) at a 

3-second spray time and 10% of PTFE can be attributed to the way PTFE particles are deposited 

on the epoxy layer. When the amount of PTFE particles is low, they sink into the adhesive layer 

and the accumulation of nanoparticles on the sunken ones is not enough to uniformly cover the 

whole surface of the specimen.  
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In addition to the water-contact angle, the work of adhesion can also be considered as a 

criterion for showing how much a nano-coated asphalt concrete can achieve ice/snow repellence 

(14). The lower the work of adhesion, the more ice/snow repellent a surface becomes. The work 

of adhesion can be calculated using Equation (1) (14).   

 
𝑊𝑊𝐴𝐴  =  γ𝐿𝐿𝐿𝐿 (1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  (1) 
 
Where: 𝑊𝑊𝐴𝐴 = work of adhesion at contact angle 𝑐𝑐; and γ𝐿𝐿𝐿𝐿 is the surface tension of water, equal 

to 72.8 mN/m. 

The values of work of adhesion were calculated based on the data of Table 3.2, and the 

results are presented in Table 3.3. Note that, in Table 3.3 the work of adhesion is considerably 

low for all of the spray times and dosages of PTFE, except for the specimens coated with a spray 

time of 3 seconds and a PTFE dosage of 10%. It is worth noting that, because of the sensitive 

nature of Equation (1), increasing the spray time and the dosage of PTFE results in considerable 

changes in the calculated values of work of adhesion (See Table 3.3). 

Table 3.3  Measured values of work of adhesion (mN/m). 

 
Spray 
Time 

(s) 

PTFE (%) 

10 20 30 40 

3 31.3 8.6 6.8 9.5 
6 6.4 5.8 6.1 6.8 
9 4.1 7.6 2.4 5.3 
12 6.5 6.3 4.1 2.1 

 

Coefficient of Friction Measurements 

The data from the ramp load test were plotted and straight lines were fit to them, with the 

slope of the line equal to the kinetic coefficient of friction (µk). The COF was measured over the 

three paths on each replicate, then the three measured values were averaged for each replicate. It 
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is worth noting that since each specimen had three replicates, to compare the skid resistance of 

the coated and uncoated asphalt concrete, the COF was also measured over three paths on sixteen 

uncoated control specimens - each specimen had one replicate for control purposes. Figure 3.6 

represents the data gathered from one of the ramp load tests for a coated specimen. The kinetic 

COF for this specimen is 0.25. 

 

Figure 3.6  The data obtained from the ramp load test. 

After calculating the coefficients of friction for all 16 coated specimens, each having 

three replicates, a two-way ANOVA was conducted. For the selected confidence level of (1-α) = 

0.05, spray time, with a P-value of 0.0001, became the most significant factor, and the 

percentage of PTFE, with a P value of 0.001, also turned out to be important. The results of the 

ANOVA performed on the measured contact angles and coefficients of friction were compatible, 

with spray time the most significant factor in both types of tests. 
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Figure 3.7  Averaged coefficient of friction values. 

Note that, in Figure 3.7, increasing the spray time from 3 seconds to 6 seconds 

considerably increases the COF values, and the results obtained in this section are in agreement 

with the result obtained for the contact angle measurements. Increasing the spray time from 3 

seconds to 6 seconds resulted in achieving superhydrophobic surfaces, while the 6-second spray 

time with more than the 10% of PTFE dosage resulted in obtaining more skid-resistant surfaces 

than for the uncoated control sample. The 6-second spray time with the 10% of PTFE dosage 

still resulted in obtaining skid-resistant surfaces comparable to those of the uncoated control 

sample.    

In fact, the 10% of PTFE dosage under different spray times achieved less skid-resistant 

surfaces than the uncoated control sample, with the reason for obtaining such relatively low COF 

values at this PTFE dosage can be attributed to the non-uniform distribution of the PTFE 

nanoparticles over the adhesive layer of epoxy. A considerable number of nanoparticles could 

have sunken into the epoxy layer, so while performing the ramp load test, the probe may have 

passed over the areas covered with epoxy on which no PTFE particles were present. The COF of 

epoxy is lower than that of an asphalt concrete surface. 
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Conclusions and Recommendations 

The goals of this study were to create, characterize, and evaluate superhydrophobic 

coated asphalt concrete surfaces for ice- and snow-free flexible pavement applications. The layer 

by layer (LBL) method and the micro-tribometer based coefficient of friction measuring method 

was employed to create superhydrophobic coatings and to characterize skid resistance of 

superhydrophobic coated substrates at micro-texture level. A statistical design based 

experimental test program was developed and conducted to evaluate the effects of different test 

variables, including spray times and dosage rates of PTFE. The major conclusions drawn from 

test procedures and results are summarized along with recommendations as follows:  

 
• Using a LBL method for spray-depositing the PTFE particles seems to be a 

promising method for achieving ice-repellent surfaces having potential to mitigate 

problems associated with ice accretion or snow accumulation on roadways or 

airfield areas paved with nano-coated asphalt concrete. 

• The micro-tribometer based coefficient of friction method designed and 

demonstrated in this study can be a promising method for characterizing skid 

resistance of nano-coated asphalt concrete at micro-texture level.   

• Spray time is a significant factor affecting superhydrophobicity. Increasing the 

spray duration from 3 seconds to 6 seconds resulted in achieving contact angles 

higher than 150°, and at the other spray times of 9 and 12 seconds, the 

superhydrophobicity remained. However, the super water-repellency did not 

uniformly increase for all of the specimens after 6 seconds. Up to a certain level, 

increasing the amount of PTFE in nano-coating of asphalt concrete also increases 

the ice/snow repellency, and above  that level, adding to the PTFE deposition 
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amount is uneconomical, and does not significantly increase the 

superhydrophobicity. 

• Similarly to superhydrophobicity, spray time had a significant influence on the 

coefficient of friction. While increasing the spray time from 3 seconds to 6 

seconds drastically increased the skid resistance of the asphalt concrete samples, 

when PTFE is sprayed on epoxy in the field, it should be kept in mind that long 

enough deposition durations should be used for spraying or else the epoxy not 

covered with PTFE can slightly decrease the skid resistance over the 

roadway/runway. 

• In the context of micro-texture, PTFE results in obtaining comparable or even 

higher skid resistances measured on the nano-coated asphalt concrete at 6-second 

spray time for all PTFE dosages. If the spray time and dosage of PTFE are wisely 

selected, the nano-coated pavements can provide high coefficients of friction at 

low speeds. 

• In the context of macro-texture, the main contributors to improving skid 

resistance are shape, distribution and the angularities of the coarse aggregate in 

the asphalt concrete. In other words, the physical properties of aggregate and its 

particle distribution should be the main concern in pavements coated with the 

super-ice/water repellent nanomaterials like PTFE at high speeds. It is 

recommended that this issue be further studied before using of superhydrophobic 

coatings in actual snow and ice removal strategies for flexible pavement systems.  

• The contact angle and friction coefficient measurements were all performed at 

ambient temperature. Since flexible pavements coated with icephobic PTFE must 
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curb the formation of ice/snow in cold climatic conditions, it is recommended to 

perform these tests at lower temperatures so that the effect of temperature on 

spray deposition, water/ice repellency, and skid resistance can be determined.       
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Abstract 

The objective of this study was to synthesize, characterize, and evaluate use of 

nanomaterials-based superhydrophobic (super water-repellent) coatings on portland cement 

concrete (PCC) surfaces. These coatings are synthesized with nanomaterials such as 

polytetrafluorethylene (PTFE), polyether ether ketone (PEEK) and silanized diatomaceous earth 

(DE). Using a layer-by-layer (LBL) deposition technique, each coating type was deposited at 

four different spray durations, and the resulting water-repellency of the coated surfaces were 

characterized by measuring static water contact angles (WCAs). These measurements were 

evaluated through a statistical design-based experimental test program that revealed that spray 

duration and coating type are significant variables. A skid-resistant coating composed of PTFE 

and PEEK was utilized to evaluate the impact of superhydrophobic coatings on pavement skid 

resistance. 
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Introduction 

Presence of ice and snow on the surface of rigid pavements and penetration of water into 

portland cement concrete (PCC) have always been constant sources of concern. During the 

wintertime, slippery conditions on sidewalks and critical areas of roadways - such as steep slopes 

and intersections - impose injuries on pedestrians and traveling passengers. Each year, agencies 

spend millions of dollars removing ice and snow from these surfaces, and in airports, particularly 

since the beginning of “all-weather” aircraft operations, each winter there have been landing and 

aborted takeoff incidents or accidents because of slippery and icy conditions on aprons, 

taxiways, and runways. In addition to pavement winter maintenance issues due to presence of ice 

and snow, penetration of surface water into PCC causes durability-related problems like 

freezing-induced damage [1] and sulfate attack [2] leading to expansion, cracking, scaling, and 

crumbling of the concrete. To overcome winter maintenance related problems, the use of heated 

pavements [3,4] and superhydrophobic (super water-repellent) coating techniques [5,6] have 

received recent attention as alternatives to costly and time consuming conventional ice and snow 

removal practices. Superhydrophobic surfaces, typically icephobic (ice-repellent) [7], can make 

concrete more durable [8] by repelling surface water.  

Lotus leaf is the most famous superhydrophobic surface in nature [9], and there have 

been biomimetic approaches to mimicking the “lotus effect” for producing hydrophobic (water-

repellent) surfaces [10, 11]. Hydrophobicity is governed by chemical properties of the materials - 

or surface energy and a nano to micro scale hierarchical topographical or surface roughness 

structure [12]. Although transferring the fascinating “lotus effect” to artificial surfaces has been 

widely researched, there is very limited literature dealing with bio-inspired superhydrophobic 

concrete. 
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So far, superhydrophobic PCC that can also be icephobic [7] has been produced by either 

applying siloxane-based coatings or emulsions either on concrete with an integrated microtexture 

[13] or on concrete with embedded hierarchical structure [14]. In both these methods, while the 

micro roughness and hierarchical structures were produced in fresh concrete, PCC can become 

superhydrophobic without changing concrete’s original structure of [15]. For example, there are 

cases in which super water-repellent asphalt concrete was created using only polymeric 

nanostructured coatings like fluoroacrylate [11] or fluorocarbon [5]. There are numerous low 

surface energy materials like polytetrafluoroethylene (PTFE) [16], polyetheretherketone (PEEK) 

[17] and perfluorodecyltrichlorosilane (PFDTS) [18] that can become nanostructured using 

appropriate techniques at the laboratory, and they can then can be utilized for producing super 

ice/water-repellent coatings on concrete.    

Superhydrophobic pavements should maintain skid resistance at an acceptable level in 

the absence of ice or snow. Two components affect tire-pavement friction: adhesion and 

hysteresis [19–21]. Adhesion results from molecular bonds developed between the pavement 

surface and the tire, while the hysteresis component is related to rubber deformation due to 

pavement surface asperities. While superhydrophobic coatings can slightly decrease skid 

resistance by changes in surface chemistry, producing the correct surface texture (asperity 

pattern) on PCC can solve this problem [22]. Among the causes of pavement surface asperities, 

micro texture (irregularities between 0.005 and 0.3 mm) and macro texture (irregularities 

between 0.3 and 4 mm) are the most influential in terms of skid resistance [19]. The frictional 

property of PCC at microtexture level, can be measured using a British pendulum tester (BPT), 

either at the laboratory or in the field [23].  
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The purpose of this study was to investigate the feasibility of producing 

superhydrophobic concrete, at laboratory scale, for ice-and snow-free pavement applications. To 

this end, a statistical design-based experimental test program was developed to create and 

evaluate nanostructured superhydrophobic coatings on PCC substrates. The layer-by-layer (LBL) 

method of spray deposition was utilized to coat the PCC substrates with PTFE, PTFE/PEEK, and 

diatomaceous earth (DE) silanized with PFDTS. The superhydrophobicity of the coated samples 

was evaluated by measuring water contact angles (WCAs), followed by a statistical analysis so 

that the significant design variables could be identified. PTFE/PEEK was selected for coating 

PCC specimens with different surface textures at the laboratory. After coating the specimens, the 

effect of different asperity patterns on enhancing the skid resistance was evaluated. It is hoped 

that the findings of this study will provide guidance with respect to field implementation of 

superhydrophobic PCC. 

Materials and Methodology 

To investigate the effects of different variables on the superhydrophobicity of nano-

coated PCC substrates, a statistical design was developed prior to their preparation. The selected 

design variables include the types of water-repellent materials (PTFE, PTFE/PEEK, and 

silanized DE) and spray durations (4, 6, 8, and 10 seconds). After preparing and coating the 

substrates, superhydrophobicity levels of the samples were characterized by measuring the static 

WCAs.  For evaluating the effect of nanotechnology-based materials on skid resistance, seven 

different types of surface textured PCC specimens were prepared. The textured specimens were 

coated with PTFE/PEEK and their skid resistance measured using a British pendulum tester 

(BPT) both before and after the coating. 
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Preparation of Water Contact Angle (WCA) Measurement Substrates/Specimens 

The concrete used in this study was prepared in accordance with Iowa DOT mix design 

(Materials I.M.529) for constructing PCC pavements similar to that described by the FAA 

advisory circular [24] for construction of airports. The selected water-to-cement ratio was 0.43, 

and the cement utilized was ASTM C 150 type I/II [25] manufactured by Holcim. The coarse 

aggregate was limestone - conforming to ASTM C 33’s D-57 gradation category [26] - with 

nominal maximum aggregate size of 25 mm. The fine aggregate was river sand conforming to 

ASTM C 33 specifications. After preparing the concrete, it was cast into cylindrical molds (100 

mm in diameter and 200 mm in height); the specimens were demolded after one day and cured 

for 28 days at 23ºC and 100% relative humidity. The cylindrical concrete specimens were then 

cut using a diamond saw to obtain twelve 10-mm-thick disk-shaped specimens with smooth cut 

surfaces. To obtain replicates, each specimen was further cut to obtain quarters (Figure 4.1).  

 

Figure 4.1  Preparation of PCC substrates at the laboratory. 

Preparation of Skid Resistance Measurement Specimens 

Microtexture is fine-scale roughness resulting from the presence of fine aggregates and 

pores in the concrete. On the other hand, macrotexture results from measureable striations that 

are formed through texturization on fresh or hardened concrete [27]. To investigate the influence 

of superhydrophobic coatings on PCC skid resistance, it was decided to prepare different surface 
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textures on fresh concrete specimens cast in beam molds, with concrete mixture and curing 

regimes identical to those used in preparation of cylindrical specimens. In this way, the effect of 

surface texture (see Figure 4.2) on enhancing a potential drop in skid resistance of coated PCC 

could be evaluated. The surface areas of the specimens were large enough to accommodate the 

required width and length (78×127 mm) for measuring the skid resistance by BPT. It is worth 

noting that a smooth control surface was also prepared by finishing the surface of fresh concrete 

with a steel trowel. 

 

Figure 4.2  Magnified images of different surface textures produced using burlap, tine, broom 
and turf. 
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Burlap, broom and turf drag surfaces usually have 1.5-3 mm deep striations [27]. The tine 

depth, width and spacing of the tine texture surfaces produced in this study were 5, 3, and 10 

mm, respectively, all within the recommended ranges [27]. 

Coating the Substrates/Specimens 

This research mostly highlights the production of three different nanostructured 

superhydrophobic coatings on the surface of PCC for ice-and snow-free rigid pavement 

applications. The water-repellent materials used in this study were PTFE, PEEK, and DE. DE, 

being hydrophilic, was silanized with PFDTS to render it hydrophobic. These materials were 

chosen based on their promising water-repellency and tribological behavior on aluminum 

surfaces reported in an earlier study [28].  According to that study [28], any of the coatings 

synthesized with PTFE, PTFE, PEEK, or silanized DE resulted in satisfactory durability against 

grinding action, tested by rubbing 240-grit silicon carbide paper against the coated aluminum 

surfaces. In other words, there was not a considerable drop in water-repellency after reducing the 

coating thicknesses by approximately 30% [28]. In addition to these tests, a ball-on-flat micro 

tribometer was used for performing reciprocal wear tests on the coatings by applying a contact 

pressure of 24 MPa. The results revealed that PTFE coating had the highest wear resistance, 

followed by the PTFE/PEEK coating and then the silanized DE coating [28]. 

Zynol MP 1300 PTFE obtained from DuPont had an average particle size of 12 microns, 

and Vestakeep PEEK acquired from HT Polymers had an average particle size of 50-80 microns. 

DE obtained from Fisher Scientific had an average particle size of 5-100 microns and a porous 

structure with openings no smaller than 0.1 micron. PFDTS was acquired from Sigma Aldrich 

and used for silanizing the DE.  
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Diatomaceous earth is a chalky sedimentary material made of skeletal remains of 

prehistoric micro-organisms [29]. This hydrophilic material can become hydrophobic after 

silanizing it with a low surface energy solution like PFDTS [30]. To this end, 0.6 grams of 

PFDTS and 6 grams of DE were introduced into a beaker, followed by hexane added to the 

beaker in such a way that the total volume of all the components became 50 ml. The batch was 

magnetically stirred at 500 rpm and 25°C until the hexane had evaporated in about 30 hours. 

After that, to dry the silanized DE, the beaker was placed in an oven set at 150ºC for 2 hours. 

Because of the non-planar surface of PCC, all the substrates were coated using the layer-

by-layer (LBL) method [10], a top-down coating technique. In this method, a binding layer is 

first sprayed on the substrate (first layer), and then the water-repellent material is spray-deposited 

(second layer). In this study, the binding layer was EP 1224 epoxy acquired from ResinLab. This 

epoxy is commercially available in two parts: part A, a polymer-based resin, and part B, a curing 

agent. Part A was mixed with part B at the volume ratio of 2:1, and to decrease viscosity it was 

mixed with acetone at a volume ratio of 1:1. The whole batch was then magnetically stirred for 5 

minutes at 500 rpm and 25ºC. At the end of the stirring process, the prepared binder was 

immediately introduced into the paint cup of a spray gun specifically intended for spraying the 

binder, and sprayed over the PCC substrate for three seconds (Figure 4.3a). After covering the 

surface of PCC substrates with the fresh binding agent, they were immediately coated with either 

PTFE, PTFE/PEEK, or silanized DE dispersed in acetone. 
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Figure 4.3  LBL deposition method: (a) spray gun set-up and (b) production of different types of 
coatings. 

For coating the substrates with PTFE or silanized DE, 6 grams of each of the mentioned 

materials were mixed with acetone in such a way such that the total volume of PTFE and acetone 

or the total volume of silanized DE and acetone was 60 ml. For coating the specimens with 

PTFE/PEEK, 5 grams of PTFE and 1 gram of PEEK were mixed with acetone to obtain a 60 ml 

batch.  

Since a PEEK/PEEK coating provides reasonable friction on a concrete surface [28], all 

the skid resistance measurement specimens were coated with PTFE/PEEK. Each of the obtained 
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batches (PTEF + acetone, PTFE/PEEK + acetone, or silanized DE + acetone) were magnetically 

stirred for 15 minutes at 500 rpm and 25ºC, the prepared batches introduced into the paint cup of 

a completely clean spray gun used only for spraying the hydrophobic materials (Figure 4.3a), and 

then sprayed on the PCC substrates covered with fresh binder. Based on the execution of 

statistical design, the WCA measurement specimens were coated with PTFE, PTFE/PEEK, and 

silanized DE at spray durations of 4, 6, 8, and 10 seconds. Based on the statistical analysis 

performed on the measured WCAs, the specimens used for skid resistance measurement were 

coated only with PTFE/PEEK for 6 seconds. After the specimens were coated, they were allowed 

to rest for 5 hours so that the epoxy could cure before measuring skid resistance. 

Figure 4.3b depicts a closer view of the spray deposition mechanism of different water-

repellent materials on the portland cement concrete. After deposition, all the low surface energy 

materials utilized provide a hierarchical structure with particle sizes ranging from nanoscale to 

microscale. The LBL deposition technique allows the particles to cover the surface and produce 

the desired roughness.  

WCA Measurement 

Using a micropipette, 4 µL water droplets were deposited on three spots over each 

replicate (quarter disk-shaped substrate) at 25 °C and 65% relative humidity. Since each 

specimen had 4 replicates, 12 water droplets were deposited for measuring the WCAs on each 

specimen. After placing each water droplet on the surface, it was allowed to relax for 30 seconds 

to reach equilibrium [31], after which each water droplet was magnified with a macro lens and 

imaged using a Canon EOS 70D camera (Figure 4.4). 
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Figure 4.4  The set up used for magnifying and capturing the tiny water droplets. 

 A proper level of illumination was established to facilitate detection of the solid-liquid 

(SL) and liquid-gas (LG) interfaces. After obtaining the images, tangent lines were drawn on the 

SL and LG interfaces (Figure 4.5a), and the water contact angles measured with an on-screen 

protractor. Figure 4.5a also shows the effect of different materials and variation in spray duration 

on the measured WCAs. The procedure utilized for measuring the WCAs in this study is referred 

to as a sessile-drop and tangent line method [31]. It is worth noting that a surface is called 

superhydrophobic when the measured WCA is equal to or larger than 150° [32]. 
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Figure 4.5  Water droplet deposition: (a) deposition of 4 µL water droplets using the sessile-
method and measuring the WCAs and (b) water-repellency of uncoated (left) and coated (right) 
PCC specimens. 

Figure 4.5b depicts the behavior of water droplets on the uncoated and coated PCC 

cylindrical specimens of 50 mm diameter. The sizes of these droplets are much greater than the 

ones used for WCA measurements. 
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Skid Resistance Measurement 

The British pendulum number (BPN) is representative of the lost amount of kinetic 

energy after one pass of the British pendulum tester (BPT) rubber slider on a test surface [33]. 

Although BPT (Figure 4.6a) is mainly used for measuring skid resistance at microtexture level, it 

can also be used for measuring the influence of macrotexture on the obtained BPN values [34].  

In other words, macrotexture can also be influential at low speeds. Investigating the effect of 

macrotexture on enhancing the skid resistance of coated surfaces was another novel feature of 

this study.  

 

Figure 4.6  Skid resistance test: (a) schematic of the BPT device and (b) measurement of BPN on 
an icy surface. 

In accordance with ASTM E303-93 standard [35], the skid resistance under wet 

conditions was measured. Although a level was used to ensure that the coated specimens and the 

BPT were completely horizontal, keeping the water on the coated surfaces was not easy due to 

high water repellency of the surfaces, causing the water droplets to bead up each time surface 

wetting was attempted. In addition to measuring the BPN values under wet conditions - was in 
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accordance with the ASTM E303-93 standard - it was decided to measure the BPN values under 

dry conditions for the sake of comparison. While the BPNs were measured on the uncoated 

samples at 25°C and relative humidity of 65%, due to delay in the measurements on the coated 

samples, their BPNs were measured at 35°C and relative humidity of 73%. To make a 

comprehensive study regarding winter maintenance of paved areas, a 5-mm thick layer of ice 

was produced on one of the samples at -10°C, and its skid resistance was measured (Figure 

4.6b). 

Results and Discussion 

WCA Data Analysis 

The water contact angle was measured at 12 different positions on each specimen and the 

measured values were averaged (Figure 4.7). 

 

Figure 4.7  Measured and averaged WCAs. 

 It is worth noting that each specimen had four replicates on each of which three WCAs 

were measured, so each bar in Figure 4.7 represents averaged values for 12 WCA measurements. 
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A two-way analysis of variance (ANOVA) with the WCAs as responses was conducted. For the 

selected confidence interval of (1- α) = 0.95, the spray duration and the type of water-repellent 

material turned out to be significant factors (P-values of 3.2 × 10-09 and 9.9 × 10-07, respectively). 

In the ANOVA analysis, a factor becomes significant if its P-value is less than α (0.05 in this 

study). The smaller the P-value, the more significant the factor. Although both factors became 

significant, it is possible to say that, because of its smaller P-value, spray duration had more 

influence on the responses obtained .  

Note that in Figure 4.7 all of the specimens coated with PTFE and silanized DE are 

superhydrophobic because all of their measured WCAs are greater than 150 º. These types of 

particulate systems have been shown to produce the hierarchical structure necessary to exhibit 

superhydrophobicity [28]. As the spray duration increases, while the hydrophobicity increases 

steadily for the specimens coated with silanized DE and PTFE/PEEK, the samples coated with 

PTFE do not exactly follow this trend. Adding two more seconds to the spray duration of 8 

seconds results in a slight reduction in superhydrophobicity of PTFE at 10 seconds. The reason 

for this behavior can be attributed to the saturation of the PCC substrate with the PTFE particles 

in such a way such that excess particles cannot stick to the binder and are blown away during the 

spraying process. While this phenomenon might have been observed on the surfaces coated with 

PTFE/PEEK and silanized DE at spray durations of 10 seconds, it is possible to postulate that the 

silanized DE and the PEEK present in PTFE/PEEK coating have a higher affinity for sticking to 

the epoxy utilized in this study. 

For the spray duration range of 4-8 seconds, the substrates coated with PTFE have higher 

WCAs compared to those of the PCC substrates coated with PTFE/PEEK. The reason for this 

behavior stems from the fact that PTFE with a WCA of 108° [16] is more hydrophobic than 
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PEEK having a WCA of 88° [36]. Since this comparison has been made based on measurements 

performed on solid pieces of these materials, not when they are tiny particles at nano and micro 

scales, when the hierarchical structure is formed with the aid of the LBL spray deposition 

technique, PTFE outperforms the PTFE/PEEK coating. Another important aspect of Figure 4.7 is 

the decrease in differences between the WCAs measured on PTFE and PTFE/PEEK coatings as 

the spray duration increases from 4 to 8 seconds. This phenomenon can be explained by 

considering the sizes and specific gravities of PTFE and PEEK particles. The specific gravity of 

PTFE is almost 1.5 times greater than that of PEEK, and the average particle size of PEEK is 

almost 5 times greater than that of PTFE. As a result, PTFE particles approach the surface and 

penetrate into the binder in quicker fashion when they are sprayed using the LBL method. As a 

result, for short spray durations, the difference between the WCA measured for PTFE and 

PTFE/PEEK is bigger, and this difference diminishes as more PTFE particles accumulate and 

spread over the surfaces at longer spray durations of PTFE/PEEK. For the same reason, while the 

PTFE/PEEK is not superhydrophobic, it is still more than just hydrophobic [37] at a spray 

duration of 4 s. In that short amount of time, most of the PTFE particles sink into the binder, and 

only a small number bind to the surface and their presence is dwarfed by that of PEEK particles.  

As expected, the highest hydrophobicity for all spray durations was achieved when 

silanized DE was used for coating the surface of PCC [30]. The reason for this excellent 

superhydrophobicity ( WCAs > 160°) for spray durations of 6,8 and 10 seconds can be attributed 

to the nanoscale porous silica-rich structure of DE providing a high surface area [30]. Moreover, 

the relatively bigger particle average size of silanized DE (see Figure 4.3b) enhances its 

superhydrophobicity [17]. It is worth noting that the highest contact angle was achieved when 
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the silanized DE was sprayed for 10 seconds on the PCC, and, to the author’s knowledge, this 

was the first time that a measured WCA on the concrete exceeded 160°. 

Skid Resistance Data Analysis 

The specimens used for skid resistance measurement were coated with the skid resistant 

PTFE/PEEK coating for a duration of 6 seconds. The PCC substrates coated with PTFE/PEEK 

approached superhydrophobicity at a spray duration of 6 seconds (see Figure 4.7), so the use of 

longer spray durations would not be practically economical. 

As expected, under both wet and dry conditions, the control surface achieved the lowest 

BPN values both before and after coating (Table 4.1& Table 4.2). Since this control surface was 

made by simply troweling the surface of fresh concrete, no considerable macrotexture was 

produced. 

Under wet conditions, the coated and uncoated specimens with transverse turf drag 

texture exhibited the  highest BPN values (Table 4.1). Because of the sharp edges of the 

asperities formed on this type of surface, the rubber is easily trapped in its striations and hence 

deforms more easily (see Figure 4.2). It is also believed that the turf drag surface provides a 

surface friction equivalent to that of concrete pavements [38]. While the measured BPN value on 

the wet uncoated turf drag surface was 83.25, after measuring the skid resistance on the coated 

surface, the BPN value dropped by approximately 36%, resulting in the obtained value of 52.75. 

This behavior can be attributed to the completely horizontal state of the surface that did not allow 

the water droplets (beaded up on the coated surface) to easily flow.      
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Table 4.1  Measured BPN values in wet condition.  

Types of Surface Texture Before Coating After Coating RSR 
Ave. SE Ave. SE % 

Control 58.50 0.28 34.50 0.86 41.02 
Burlap 72.12 0.51 43.75 0.47 39.34 
Transverse and longitudinal Tine  77.75 0.14 52.50 0.64 32.47 
Transverse Broom  75.97 0.14 51.50 0.64 32.21 
Transverse and longitudinal Broom 72.50 0.64 48.75 0.85 32.75 
Transverse Tine  64.37 0.47 41.50 0.35 35.53 
Transverse Turf Drag  83.25 0.47 52.75 0.25 36.63 

Note: Ave = Average, SE = Standard Error and RSR = Reduction in Skid Resistance. 
 

Unlike the other surface textures, the turf drag surface did not have interconnected tiny 

channels on the surface (see Figure 4.2), and as a result, after each surface wetting, some water 

remained trapped on the completely horizontal surface of the specimen. In addition to this 

drainage problem, the striations on the turf drag surface were possibly somewhat shallower than 

other surface textures - excluding the control and burlap - so that the BPT foot could be 

lubricated by the water remaining in the tiny dips and lead to a considerable drop in the 

measured BPN. Among all of the coated surfaces investigated in this study, broom (both types), 

and transverse and longitudinal tine textures exhibited better surface drainage qualities with less 

reduction in skid resistance, approximately 32%.  

Under dry conditions (Table 4.2), the highest value of BPN was achieved for the 

uncoated turf drag surface but, compared with wet conditions, the dry coated turf drag surface 

caused a smaller drop in BPN (approximately 20 %), resulting in the obtained value of 79.25. 

Among all the investigated coated surfaces, transverse and longitudinal tine texture provided the 

lowest reduction in skid resistance,  2.48%.    
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Table 4.2  Measured BPN values in dry condition.  

Types of Surface Texture Before Coating After Coating RSR 
Ave. SE Ave. SE % 

Control 65.25 0.25 49.50 0.328 24.13 
Burlap 72.50 0.28 65.87 0.87 9.13 
Transverse and longitudinal Tine  85.50 0.28 83.37 0.55 2.48 
Transverse Broom  86.5 0.28 71.00 0.41 17.91 
Transverse and longitudinal Broom 88.00 0.08 69.00 0.71 21.59 
Transverse Tine  89.25 0.41 68.12 0.31 23.66 
Transverse Turf Drag  98.75 0.25 79.25 0.48 19.74 

Note: Ave = Average, SE = Standard Error and RSR = Reduction in Skid Resistance. 
 

Actual concrete pavements are designed and constructed with a crown or slope to 

facilitate the drainage of water from their surfaces, and superhydrophobic coated surfaces in this 

condition (i.e. slightly tilted surface) would help the water droplets flow out immediately, so it 

would be more realistic to consider the skid resistance data only for the dry condition. By 

following this assumption, data analysis complexity will be reduced, and the effect of surface 

texture on enhancing the skid resistance of superhydrophobic PCC pavements could be 

interpreted in a simpler way. 

It is worth noting that the skid resistance was measured on the uncoated surfaces at 25° 

C, and for the coated specimens the BPNs were measured at 35° C. Since hysteresis changes 

with temperature, and for each 1°C increase in temperature, the skid resistance would drop by 

approximately 0.35 BPN [20]. Due to this phenomenon, the obtained BPN values measured on 

the coated surfaces could be a little higher than those presented in Table 4.1 and Table 4.2.  

The average BPN value measured on the icy surface turned out to be 16, drastically lower 

than the lowest obtained values measured on the coated control surface under both dry (BPN = 

49.5) and wet (BPN = 34.5).  
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Findings and Conclusions  

The objective of this study was to investigate the feasibility of producing super water/ice-

repellent portland cement concrete in a laboratory environment. The LBL spray deposition 

technique was utilized to produce three different nano-based superhydrophobic coatings on 

concrete surfaces. A statistical design-based experimental test program was conducted on the 

measured responses (WCAs) to evaluate the effect of different test variables, including spray 

durations and coating types. A British pendulum tester was used for investigating the influence 

of different concrete surface textures on enhancing the skid resistance of surfaces coated with the 

most wear-resistant coating. The efforts made in this study lead to the following conclusions: 

 

• Low surface energy materials like PTFE, PEEK and silanized DE can help achieve 

water/ice-repellent surfaces with potential to mitigate the winter maintenance issues on 

roadways and airfield areas paved with PCC. 

• The Layer-by-layer (LBL) spray deposition technique was for the first time utilized to 

create superhydrophobic PCC for ice-and snow-free rigid pavement applications. The 

detailed procedure was clearly documented in a step-by-step manner so that other 

researchers and practitioners can study and implement this technology.    

• Spray duration significantly affects superhydrophobicity. The WCA increased for all the 

specimens  (except the ones coated with PTFE) as the spray duration increased from 4 to 

10 seconds. The specimens coated with PTFE showed the same trend for durations of 4 to 

8 seconds, meaning that this type of coating, among the selected spray durations for this 

study, reaches its best performance at a spray duration of 8 seconds. 
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• Similar to spray duration, the choice of type of low surface energy material had an 

important impact on the degree of hydrophobicity. Within the spray duration range of 4-8 

seconds, the PCC specimens coated with silanized DE were the most superhydrophobic, 

followed by the PTFE. While the 4-second spray deposition of PTFE/PEEK resulted in 

obtaining an overhydrophobic but not superhydrophobic surface, for this type of coating, 

all other spray durations resulted in obtaining superhydrophobic PCC specimens. The 

silanized DE reached excellent superhydrophobicity with a measured WCA greater than 

160° at a spray duration of 10 seconds. This is the first time that a superhydrophobic PCC 

with such a high degree of superhydrophobicity has been demonstrated. 

• Texturizing the PCC surface can considerably enhance diminished skid resistance on 

super water/ice-repellent rigid pavements. Transverse turf drag texture and transverse and 

longitudinal tined surfaces are good candidates for enhancing the skid resistance of 

superhydrophobic rigid pavements. 

Recommendations 

There are a huge number of different types of water-repellent materials and spray 

deposition techniques that should be investigated in further studies for finding smart solutions for 

winter pavement maintenance. Although, according to the reported literature 

superhydrophobicity leads to ice-repellency, it is recommended that the force required to detach 

the ice from the surface of superhydrophobic concrete be directly measured to see if any ice will 

attach to this type of concrete. Another issue that requires investigation is the durability of these 

nano-coatings on paved areas. There is a need for producing a standard test setup for measuring 

the wear resistance of these coatings on PCC surfaces. After performing such ab investigation, 

the most appropriate materials resulting in the most economical approach should be utilized for 
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spray deposition on PCC surfaces. Producing superhydrophobic concrete is all about making a 

balance between cost and performance, i.e., one must decide between either increased lifespan 

and increased cost, or decreased lifespan and lower cost. It would also be possible to nano-treat 

the surface of heated PCC pavements, then investigate the combined effect of these technologies 

with respect to removing ice and snow. 
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Abstract 

Asphalt mastic, a pitch-matrix composite, consists of bitumen and mineral fillers (very 

fine aggregates) that fill the voids created by coarser aggregates in asphalt concrete. In this study, 

asphalt mastic was modified with carbon fiber (CF) and graphite powder (GP) to produce single-

phase (containing only CF) and two-phase (containing both CF and GP) electrically-conductive 

asphalt mastic (ECAM) to fill the aggregate system in asphalt concrete and impart ice and snow 

melting capabilities to asphalt concrete. Volume resistivities were measured at two different 

temperatures, and the influence of temperature on electrical conductivity was evaluated, 

revealing that reduction in temperature enhances ECAM electrical conductivity. After analyzing 

the volume resistivity data for both single-phase and two-phase ECAM specimens, heat 

generation efficiency of single-phase ECAM was investigated at a conductive material dosage 

slightly higher than the optimum level. The heat generation efficiency was evaluated at below-

freezing temperatures by performing active infrared thermography (IRT). Based on the active 

IRT analysis results, it was found that single-phase ECAM at the selected CF content is capable 
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of generating enough heat for melting ice and snow or preventing accumulation of snow and 

formation of ice. 

Introduction 

Electrically-conductive asphalt concrete (ECAC) can be a promising material for anti-

icing or de-icing purposes to mitigate winter maintenance problems in critical paved areas such 

as airports, bridge decks, etc. ECAC can be produced by adding conductive aggregates or fillers 

to asphalt concrete. Asphalt concrete consists of bitumen, aggregates, and fillers, with aggregates 

providing a skeleton that needs to be covered while the filler combined with bitumen forms a 

mastic that fills the interstitial voids created by aggregates [1]. A common way for producing 

ECAC is incorporating conductive fillers into asphalt concrete [2], [3], i.e., producing an 

electrically-conductive asphalt mastic (ECAM) that fills the voids created by an aggregate 

system. Because of the key role that ECAM can play in generating a desired amount of heat 

through resistive heating in asphalt concrete, its resistivity and heat generation capability should 

be studied in a more isolated way, i.e., when there are no aggregates present [4] to interfere with 

ECAM performance. 

García, et al., [5] who studied the heating efficiency of electrically-conductive asphalt 

mortar (ECAM + sand) for self-healing applications, investigated the heat-generation capacity of 

asphalt mortar through induction heating. They used eddy currents produced by a magnetic field 

[3] for increasing the temperature in asphalt mortar. Generation of eddy currents requires closed-

loop conductive material circuits [5] locally present in asphalt-based materials, but in conduction 

heating, for ice-and snow-free pavement applications [6], there is a need for presence of 

continuous conductive material network(s) in asphalt-based materials connecting one electrode 

to another, so that the electric current can flow between the electrodes when they are subjected to 

an electric potential difference.  
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Material-related factors, including types, combinations, and amounts of conductive fillers 

can influence the volume resistivity of ECAM. García, et al., [7], were the first to investigate the 

influence of steel fibers on enhancing the electrical conductivity of asphalt mastic for self-

healing applications. They produced an ECAM with a volume resistivity of 200 Ω-cm at an 

optimum fiber content of 6% by volume of mastic. Although conductive powders can enhance 

electrical conductivity, it is believed that addition of conductive powders to asphalt concrete 

containing conducting fibers has no appreciable influence on enhancing electrical conductivity 

[2]. With advancement in production of conductive fibers and fillers, it seems possible to 

produce highly-conductive asphalt-based materials capable of generating sufficient heat for ice-

and snow-free heated pavement applications.  

In addition to material-related factors, external stimuli can influence the electrical 

conductivity of a composite material such as ECAM [8]. Wu, et al., [9], first to investigate the 

influence of temperature change on electrical resistance of dense-graded ECAC, found that while 

reducing the temperature from 30°C to 24°C did not result in any change in resistance of ECAC, 

they observed a 12% reduction in resistance when they subjected the same ECAC to a 

temperature reduction from 38°C to 30°C. Resistivity of polymers (such as bitumen) not 

containing conducting materials is temperature-dependent [10], and above the glass transition 

temperature (Tg∞), which for bitumen can occur at temperatures as low as -25°C [11],  the 

volume resistivity of polymers gradually increases with decreasing temperature [12], i.e., 

polymers exhibit a negative thermal coefficient (NTC) for T > Tg when they are not modified 

with electrically-conducting materials. As a result, investigating the effect of temperature on 

volume resistivity of ECAM at below-freezing temperatures (but still higher than Tg) is of 
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paramount importance, since ECAM would not be a good candidate for ECAC-heated pavement 

applications if it were not able to maintain its electrical conductivity at low temperatures.  

The objective of this study was to produce an electrically-conductive asphalt mastic 

(ECAM) with efficient heat generation capability, so that when it fills voids created by 

aggregates, the result is an anti-icing or de-icing electrically-conductive asphalt concrete (ECAC) 

for heated pavement applications. To achieve the objective of this study, asphalt mastic was 

modified with carbon fiber (CF) and graphite powder (GP) to produce both single-phase 

(containing only CF) and two-phase (containing CF and GP) ECAM specimens. Volume 

resistivities were measured at two different temperatures, and when the influence of temperature 

on electrical conductivity was evaluated, percolative behaviors were observed and low resistivity 

regions were identified. After analyzing the volume resistivity data for both single-phase and 

two-phase ECAM specimens, it was decided to investigate heat generation efficiency only for 

single-phase ECAM at a certain conductive material dosage slightly higher than the optimum 

content. The heat generation efficiency was evaluated at a below-freezing temperature by 

performing active infrared thermography (IRT). Finally, based on the active IRT analysis results, 

it was found that single-phase ECAM at the selected CF content is capable of generating enough 

heat at the selected below-freezing temperature for anti-icing and deicing purposes. Figure 5.1 

presents more information regarding the procedure followed for accomplishing this study. 
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Figure 5.1  Flowchart laying out the research steps. 

Experimental 

Materials 

The ECAM specimens prepared for this study were composed of performance grade (PG) 

bitumen with both non-conductive and conductive fillers. The bitumen, PG 58-28, was obtained 

from Jebro Inc. The non-conductive filler was hydrated lime (HL), and the conductive fillers, 

obtained from Asbury Carbons Inc., were flake-type graphite powder (GP) and carbon fiber 

(CF). The properties of each component type are presented in Table 5.1. 
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Electrical conductivity in a composite material such as ECAM depends on (in order of 

importance) [13], [14]: (a) intrinsic conductivity of conductive additives, (b) the degree of direct 

contact of conductive additives in an insulating matrix such as asphalt mastic, and (c) the 

hopping of electrons between the conductive materials in close proximity but not in direct 

contact. As a result, as can be easily interpreted from Table 5.1, CF, with the lowest volume 

resistivity, is the best conductivity enhancement filler, followed by GP. The resistivity values 

reported for CF and GP were obtained from Asbury Carbons Inc., and the resistance of CF, 

according to Asbury Carbons Inc., was determined by measuring the voltage drop along a single 

fiber or a fiber bundle, after which the resistivity was calculated based on the geometry of the 

single fiber or the fiber bundle. Resistivity measurement based on voltage drop is thoroughly 

explained in the ASTM D4496-13 standard. According to Asbury Inc., the resistivity of 

powdered carbonaceous materials such as GP can be measured by filling a nonconductive hollow 

cylinder with GP between two metallic pistons and forming a pressure chamber by applying a 

pressure of 200 Mpa; these pistons are connected to an ohmmeter for measuring the resistance 

and calculating the resistivity. HL and PG 58-28 are insulating materials, so their resistivity 

values are not reported in Table 5.1. SG values (see Table 5.1) are necessary for converting each 

component’s volume to weight and vice versa which helped in developing the mastic design 

information in Table 5.2. Sizes of GP, CF and HL can provide an understanding about the spatial 

dominance of CF’s when blocked by HL particles and can also be an indicator of the ability of 

CFs to bridge between the GP clusters in an insulating matrix (asphalt mastic), enhancing the 

overall composite’s electrical conductivity. Although copper electrodes have SG and size values, 

it was decided not to report them, because they were not used in this study. 
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Specimen Fabrication 

To identify suitable approaches for enhancing electrical conductivity of asphalt-based 

materials, ECAM specimens were prepared using two different methods: (a) using CF to produce 

a single-phase electrically-conductive material system, and (b) using combined CF and GP to 

produce a two-phase electrically-conductive material system. To alleviate mechanical problems 

associated with presence of GP in asphalt concrete [15], GP volume was limited to 5% of mastic 

volume. GP, because of its intrinsic lubricating characteristic and its tendency to absorb oil, if 

incorporated into asphalt concrete beyond a certain limit, about 20%, can substantially reduce 

indirect tensile strength [16], Marshall stability [15], resilient modulus [15], and rutting dynamic 

stability of asphalt concrete [15]. Since it is believed that incorporation of GP into asphalt 

concrete at a dosage rate range in the range 3% - 7% does not significantly influence its 

mechanical properties [15], [17], the median of the range 3% - 7%, i.e., 5%, was selected for 

incorporation of GP for enhancing the electrical conductivity of ECAM while not compromising 

the mechanical performance of asphalt concrete.  The high tensile strength of CFs does 

contribute to increased tensile strength of asphalt concrete [18] and its resistance to thermal 

cracking [19], [20]. With regard to stiffening effects, CFs increase the fatigue life of asphalt 

concrete [18]. It has been reported that presence of CF can increase the fatigue life of asphalt 

concrete by approximately 10-25 orders of magnitude [21] and that CF is the best conductivity 

enhancement material for use in asphalt concrete [2]. The reason for this good performance 

stems from the fact that high aspect ratio CFs produce the longest conductive paths compared 

with other types of conductive fillers [2]; the fiber-to-fiber contact mechanism facilitates the 

conductive network formation and hence increases the electron transmission rate through the 

asphalt concrete [2]. Although CF can considerably increase the electrical conductivity of 

asphalt-based materials, it has one major drawback, i.e., poor dispersion, causing CF to have a 
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high tendency to agglomerate into small or large clusters [2]. Before producing the ECAM 

specimens in this study, some trial mixes were prepared to investigate the distribution quality of 

CFs in the asphalt mastic, and it was found that while 2.75% CF was the maximum volume 

content at which the fibers would uniformly disperse in the mastic, for the sake of maintaining 

the accuracy of test results it was decided to use CF up to 2.5%. All percentages reported in this 

paper are representative of volume fractions of asphalt mastic.  

Table 5.1   Material properties. 

Material Type Properties 
SG Resistivity ( Ω.cm) Size (µm) 

GP 1.9 0.05, measured along the compaction axis of particles 
compacted at 200 MPa 

44 - 75  

CF  2.26 6×10-3, measured along the fiber axis Length = 3500 and 
Diameter= 13  

HL 2.3 NA < 75  

PG 58-28 1.035 NA NA 

Copper Electrode NA ~2×10-6 NA 
Note: SG = specific gravity, GP = graphite powder, CF = carbon fiber, HL = hydrated lime, PG = performance grade and NA= 
not applicable. 

 

For enhancing the conductivity of asphalt-based materials, it is possible to either 

substitute conductive fillers for non-conductive fillers [2] or to just incorporate the conductive 

fillers with no substitution [7]. The first approach, filler substitution, was implemented in this 

study (see Table 5.2), and a bitumen-to-filler weight ratio of 1:1 was held constant for 

preparation of all the mastic specimens. According to the Superpave method of mix design, the 

maximum amount of filler (particles smaller than 0.075mm) to be used in an asphalt concrete 

was 10% by weight of aggregate [22]. In addition to limiting the maximum amount of filler 

incorporated into asphalt concrete, the current design standard requires incorporation of mineral 

filler be limited to a ratio in a range of 0.6-1.2 by mass of filler to bitumen [23], [24], and, 

simultaneously, the gradation of the overall aggregate (including fillers) must fall within the 
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specification limits [25]. For producing ECAC, Wu, et al., [2] maintained a bitumen-to-filler 

ratio of approximately 1:1 and their asphalt concrete specimens were composed of 6.5-7.5% 

bitumen, 7.4% fillers (limestone powder and conductive fillers) and 85.6% basalt aggregates. 

García, et al, [7] investigated induction heating of asphalt mastic containing sand for self-healing 

applications and thoroughly studied the influence of sand-to-bitumen ratio; they found that a 

sand-to-bitumen ratio of 1:1 resulted in the lowest volume resistivity for a mastic containing steel 

wool and graphite. For all these reasons, a bitumen-to-filler weight ratio of 1:1 was maintained in 

all the fabricated specimens in this study. Moreover, Park et al., [26], who investigated the 

conductivity of asphalt mastic containing graphite powder, used this same filler-to-bitumen 

weight ratio in their investigations. It is worth noting that all the weights presented in Table 5.2 

were calculated using SG values provided in Table 5.1. 

Table 5.2   Detailed mastic design information for ECAM conductive systems. 

Single-phase Conductive System  Two-phase Conductive System 
CF HL 

(g) 
PG 58-28        

(g) 
 CF HL        

(g) 
GP PG 58-28     

(g) V (%) W (g) 
 

V (%) W (g) V (%) W (g) 
0.00 0.00 321.20 321.20  0.00 0.00 270.40 5.00 50.9 321.20 
0.25 2.10 319.10 321.20  0.25 2.10 268.20 5.00 50.9 321.20 
0.50 4.30 316.90 321.20  0.50 4.30 266.10 5.00 50.9 321.20 
0.75 6.40 314.80 321.20  0.75 6.40 263.90 5.00 50.9 321.20 
1.00 8.60 312.70 321.20  1.00 8.60 261.80 5.00 50.9 321.20 
1.25 10.70 310.50 321.20  1.25 10.70 259.70 5.00 50.9 321.20 
1.50 12.80 308.40 321.20  1.50 12.80 257.50 5.00 50.9 321.20 
1.75 15.00 306.20 321.20  1.75 15.00 255.40 5.00 50.9 321.20 
2.00 17.10 304.10 321.20  2.00 17.10 253.30 5.00 50.9 321.20 
2.25 19.20 302.00 321.20  2.25 19.20 251.10 5.00 50.9 321.20 
2.50 21.40 299.80 321.20  2.50 21.40 249.00 5.00 50.9 321.20 

Note: GP = graphite powder, CF = carbon fiber, HL = hydrated lime and PG = performance grade. 
 

According to the literature, conductive fillers can be incorporated into asphalt-based 

materials through either dry [7], [27] or wet [28], [29] mixing methods. In a dry mixing method, 

all components, including the conductive filler, are mixed within a temperature range of 150-

160°C [7], [27], while in a wet mixing method, the conductive fillers are first blended with 
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bitumen at an elevated temperature range of 170-180°C [28], [29], after which the modified 

bitumen is mixed with other components. Increasing the mixing temperature increases the 

oxidation of bitumen [30], so as a result, to reduce bitumen oxidation, a dry mixing method was 

utilized in this study. Using a rotational viscometer - and following the ASTM D4402 standard 

[31] - the minimum mixing temperature of PG 58-28 was determined to be 145°C. Mixing the 

mastic components at 145°C was attempted, but the conductive fillers - especially CFs at high 

dosage rates, e.g., 2.5% - did not become evenly distributed in the mastic. It was therefore 

decided to decrease the bitumen viscosity by increasing the mixing temperature, so mixing was 

attempted at 150 °C, 155 °C, 160 °C and 165°C. With increase in mixing temperature, CF 

dispersion quality improved, with the best result obtained at 165°C. It is worth noting that 

mixing at higher temperatures was not attempted due to an increased chance of bitumen 

oxidation in the mastic. Moreover, using HL as non-conductive filler in this study worked 

towards our benefit, because the HL particles applied shear during the mixing process, enhancing 

the conductive material dispersion quality. The absence of non-conductive fillers and aggregates 

is the reason for using an elevated mixing temperature range of 170-180°C in a wet mixing 

method [28], [29].  Our claim is consistent with the findings of Liu, et al., [27], who mixed steel 

wool in asphalt concrete (ECAM + aggregates) at 160 °C to produce electrically conductive 

porous asphalt concrete for self-healing applications; the applied shear by aggregates during the 

mixing process helped enhance the conductive material distribution and thereby avoided the need 

for using a high mixing temperature. Based on the results obtained during the mixing process, it 

is anticipated that producing ECAC (ECAM + aggregates) will require a mixing temperature less 

than165°C but higher than 145°C. 
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Based on the results obtained from all the trial mixes, all the mastic components were 

conditioned in an oven set to 165 °C (this does not reflect the temperature at which asphalt 

concrete would be produced in an asphalt plant) for 1 h. This conditioning time window allowed 

the bitumen viscosity to increase while bringing the temperature of bitumen, hydrated lime, and 

conductive fillers to the mixing temperature of 165°C. The components were then mixed for 5 

minutes at 60 rpm using a Hobart mixer, and the mixtures were then conditioned (cured) again in 

the oven at 165 °C for 15 m. Such conditioning time allowed the specimens to attain sufficient 

workability, after which they were hand-compacted in wooden molds (the hand-compaction 

method does not represent the way that mastic would be compacted in the field in the presence of 

aggregates). There is no standard that details the preparation of ECAM or even asphalt mastic 

specimens; Park, et al., [26] previously used a hand-compaction method for placing self-sensing 

ECAM in wooden molds, and Liu [32] and García, et al., [7] also used a hand-compaction 

method for placing ECAM in silicon molds. However, to increase test result accuracy, ECAM 

was cured in the oven (facilitating ECAM placement in the molds) and the specimen weights 

were measured after the compaction then compared with the calculated design values to decrease 

introduction of operator-related errors during the specimen preparation; such a weight control 

method was also practiced by Liu [32]. It is worth noting that, due to the absence of aggregates, 

ECAM tended to slightly deform during the demolding process at room temperature, so in this 

study, the resulting asphalt mastic specimens were conditioned for 2 h in a freezer set at 0°C so 

they could be easily detached from the molds (Figure 5.2 (a)), achieving virtually no deformation 

during the demolding process.  
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Figure 5.2  Preparation of prismatic asphalt mastic specimens: (a) demolded asphalt mastic 
specimen, and (b) asphalt mastic specimen with attached copper electrodes. 

To ensure perfect contact between the electrodes and each asphalt mastic specimen, 

dispersed graphite [2], graphite powder [5], or silver paint could be used to fill cavities on the 

specimen and enhance electrical conductivity at the electrode-specimen interface. However, 

since the bitumen used in asphalt-based materials is temperature-dependent and can become 

tacky at temperatures above 60°C [33], to take advantage of this adhesive behavior of bitumen, 

the asphalt mastic specimens were slightly warmed up using a blowtorch at the electrode-

specimen contact areas, followed by placing the electrodes into contact with the resulting tacky 

surfaces of the asphalt mastic specimens (Figure 5.2 (b)). The electrodes were forced tightly 

against the specimens, permitting the bitumen to flow and fill the small cavities, thereby ensuring 

that the electrode-specimen contact area was pore-free; there were no pores visible to the naked 

eye. It is worth noting that this method of attaching electrodes to ECAM specimens is operator-

dependent and its accuracy was evaluated through calculating relative standard errors (RSEs) 

from the volume resistivity values obtained from the ECAM specimens’ replicates. Such use of 

the bitumen adhesive property for connecting electrodes to the mastic specimens closely 

represents what is likely to happen during the actual process of ECAC paving, because it is the 
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mastic that would form the adhesive portion of asphalt concrete binding the aggregates together 

[34]  as well as helping ECAC adhere to electrodes, although the electrode material and 

configuration (including type and spacing) can vary according to the design requirements and 

field environmental conditions where the ECAC is to be placed. In other studies [35], [36], the 

authors provided detailed discussion on the field requirements of heated pavement systems made 

of electrically-conductive portland cement concrete.  

Volume Resistivity Characterization 

Resistance is defined as the ratio of applied voltage to the resulting electric current, and 

an object’s resistance depends on its dimensions and material composition [5]. To eliminate the 

effect of shape and size of an object, one can instead consider resistivity, an intrinsic material 

property. The electrical resistivity of asphalt-based materials, like other materials, can be 

obtained using Ohm’s law [5] for a specimen of length L and uniform cross-sectional area S: 

 
ρ =  𝑅𝑅𝑅𝑅

𝐿𝐿
                                                                                  `                                                        (1) 

 
where ρ is electrical resistivity measured in Ω-cm, R is electrical resistance measured in Ω, S is 

electrode-specimen contact area measured in cm2 (in this study 2.54 cm × 2.54 cm), and L is the 

distance between electrodes measured in cm (in this study 20.32 cm). 

All resistivity values were measured using a two-probe method, a common approach for 

measuring electrical resistivity of asphalt-based materials [2], [5], [28], [37], [16]. Unlike 

hydrophilic portland cement-based materials [38], asphalt-based materials are hydrophobic [39], 

and there is no concern regarding the presence of capillary water in the asphalt mastic. Since we 

are investigating the electrical properties of a water-free matrix (i.e., mastic), there is no concern 

about ionic conduction and hence no need for resistivity measurement using a four-probe method 

[40]. 
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The electrical resistivity of asphalt mastic specimens was characterized using two probes 

(i.e., copper electrodes) attached to each specimen (see Figure 5.2 (b)). A FLIR DM62 digital 

multimeter was used for measuring resistance values below 40 MΩ, and a DC Hipot Tester was 

used for measuring resistance values above 40MΩ. To evaluate temperature-dependent 

properties of asphalt, resistivity measurements were performed at both -10 °C and +10 °C. A of 

novel feature of this study was to measure the resistivity at a temperature below the freezing 

point of water (-10 C). If an ECAM matrix cannot maintain low resistivity at temperatures below 

0°C, it would be unable to generate sufficient heat and therefore unable to increase the asphalt 

concrete temperature sufficiently to melt ice/snow in an efficient manner.  

 All resistivity measurements were performed in an environmental chamber with two fans 

and a dehumidifier unit, with the fans constantly recirculating the air to ensure a uniform 

temperature distribution. At each test temperature, the dehumidifier unit maintained the relative 

humidity (RH) at the lowest possible limit to guarantee measurement accuracy. RH values were 

maintained at 10% and 35%, respectively, when measurements were performed at -10 °C and 

+10 °C. If vapor condensation the environmental chamber made it impossible to adequately 

decrease the RH, a thin layer of ice (at -10°C) or a thin layer of water (at +10°C) could form 

around the specimens, resulting in inaccurate and erroneous determination of resistivity values, 

especially in specimens containing smaller amounts of conductive materials. Volume resistivity 

of pure water at 25°C is approximately 18E+06 Ω.cm [41] and it increases with a decrease of 

temperature, e.g., the volume resistivity of frozen pure water is about 86E+06 Ω.cm.  If the 

resistivity of ice/water on the boundaries of specimen is lower than that of ECAM, during the 

resistivity measurements some number of electrons will pass through ice/water causing a false 

reduction in measured ECAM resistivity values. Observation of the same behavior is expected 
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for ECAC implemented in the field, but presence of different ions (at variable concentrations), 

PH levels, etc., can influence the volume resistivity of water, so there is a need to consider the 

influence of non-pure water/ice on ECAC, if ECAC is to be produced using very low dosage 

rates of conductive material contents, i.e., for applications other than melting ice or snow.  

Before performing resistivity measurements, all asphalt mastic specimens were 

preconditioned at each specified temperature (either -10 °C or +10 °C) for at least three hours to 

achieve thermal equilibrium [20].  The resistivity vs. conductive material volume content data 

were analyzed so that resistivity zones/stages, optimum conductive material contents, and effect 

of temperature on volume resistivity could be determined.  

Heating Characterization 

A FLIR T650sc IR camera with a resolution of 640 × 480 pixels was used to evaluate the 

heat generation efficiency of only the asphalt mastic specimen at 1 % CF volume content. 

Analyses on the volume resistivity data showed that ECAM with 1% CF provides a sufficiently 

low volume resistivity value for anti-icing and de-icing applications, and this CF content is also 

above the percolation transition zone. According to Wang, et al., [28], operating close to the 

percolation transition zone is not recommended, because safety and energy efficiency are of 

paramount importance for de-icing and anti-icing purposes, and operation in the percolation 

transition zone with its intrinsic high rate of resistivity change [28] should be avoided in design 

procedures. Also, analyses on volume resistivity data obtained from single-phase and two-phase 

ECAM revealed that utilizing GP does not substantially decrease the volume resistivity for anti-

icing and de-icing applications. A self-heating material, unlike a self-sensing one [42], requires a 

highly conductive composite, so it is better to avoid using GP – considering its negative 

influence on mechanical properties of asphalt concrete – when it does not significantly enhance 

the electrical conductivity at high CF dosage rates, i.e., equal to or greater than 1% CF. 
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 Before performing the thermography, all specimen replicates were preconditioned at -18 

°C, the lowest range at which the IR camera could operate, for at least three hours to achieve 

thermal equilibrium [20].  Performing the thermography on ECAM at a below freezing 

temperature (i.e., -18 °C ) was one of the novel features of this study, and this also prevented 

excessive deformation of mastic (due to absence of aggregates) at higher temperatures produced 

by resistive heating. Since ECAM can be heated by applying an electric current, i.e., an external 

stimulus, the heat generation efficiency of all specimens used in this study were evaluated by 

performing active infrared thermography (IRT) [43]. An AC voltage of 60 V at a frequency of 64 

Hz was applied to each specimen for a duration of 10 minutes, after which the top surface 

temperature of each specimen was measured and recorded using an IR camera that produced data 

in the form of radiometric video. The acquired data were then analyzed using the ResearchIR 

Max® software package, and the heat generation efficiency was evaluated.  

Results and Discussion 

Evaluation of Volume Resistivity  

Specimen volume resistivities were measured, and the values obtained from the replicates 

(each specimen had three replicates) were averaged for each specimen type. Figure 5.3 presents 

the change trends in volume resistivity of asphalt mastic specimens, measured at +10 °C, as a 

function of CF content. Additional information regarding the volume resistivity values of single-

phase and two-phase ECAMs, respectively, are presented in Table 5.3 and Table 5.4.  

As expected [27], three stages can be observed in the curves of  Figure 5.3: high 

resistivity, transit, and low resistivity – all of which are proof of the percolative behavior [44] of 

ECAM. In the context of electrical conductivity, percolative behavior is defined as a sudden 

decrease (by orders of magnitude) in volume resistivity, resulting in an insulator-conductor 

transition, with addition of conductive materials such as CF at small dosage rates; the transition 
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stages in Figure 5.3 are proof of such behavior [44], [45]. It is worth noting that the ECAM 

specimens had to be prepared over a wide enough range of conductive material additive to 

capture such percolative behavior. 

In the high resistivity stage, both single-phase and two-phase ECAM specimens exhibited 

resistivity values higher than 2.43×105 Ω.cm and 4.55×105 Ω.cm, respectively. In the second 

stage, for specimens modified by CF and CF&GP, the volume resistivities drop sharply from 

2.43×105 Ω.cm and 4.55×105 Ω.cm to 1.44×102 Ω.cm and 8.65×102 Ω.cm, respectively. This 

stage, associated with a large change in resistivity, is known as the percolation transition zone 

[27]. In the low resistivity stage, starting immediately after the percolation transition zone, i.e., at 

optimum conductive material contents, the resistivity values gradually decrease [2] until the 

curves become essentially flat [5]. Optimum content is defined as the value beyond which 

increasing the dosage of conductive materials does not appreciably decrease the volume 

resistivity [2]. The optimum content values for single-phase and two-phase specimens are 0.75% 

and 0.5%, respectively [27]. 

 
Figure 5.3   Relationship between electrical resistivity and CF content in single-phase and two-phase 
ECAM specimens. 
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According to Weber, et al., [46], the sudden insulator-to-conductor transition in polymer 

composites such as ECAM is evidence of existence of a percolation threshold [46]. When small 

amounts of CF are added to asphalt mastic, they tend to be completely electrically isolated, and 

electrons cannot easily travel between and within the CFs. Increasing the amount of CFs allows 

the fibers to become closer or even contact one another, i.e., the greater the amount of CFs, the 

greater the conductivity. When the CF volume content reaches a threshold value, a value within 

the transition zone (see Figure 5.3), the first few continuous conductive paths will be formed, 

enabling easy movement of electrons through the asphalt mastic and an associated substantial 

drop in volume resistivity [46]. Beyond the percolation transition zone (i.e., at optimum 

conductive material content), addition of conductive materials results in gradual development 

and spreading of a purely conductive network in all three dimensions. A similar insulator-to-

conductor behavior was observed by Liu, et al., [27], in a study performed on electrically-

conductive porous asphalt concrete for self-healing applications. Based on their findings, adding 

conductive materials to porous asphalt concrete can continue until an optimum value at which 

the conductive materials are in extensive contact with one another in all directions, forming 

many conductive networks and electron passages. As a result, above such an optimum value, 

addition of conductive materials to asphalt mastic would not significantly decrease the 

resistivity, nor would it be economical (see low resistivity regions in Figure 5.3). According to 

García, et al., [5], expected curve shapes for volume resistivity versus conductive material would 

be S-shaped for conductive asphalt mortar (i.e., a mixture of bitumen, fillers, fine aggregate, and 

electrically conductive materials), and this was confirmed for the single-phase ECAM specimens 

of this study (see Figure 5.3).  However, the curves obtained for asphalt mastic specimens made 

of two-phase conductive materials (i.e. CF&GP) are only slightly S-shaped because GP particles 



www.manaraa.com

99 
 

 
 

make the percolation transition smoother, enabling more precise manipulation of volume 

resistivity over a wider range of conductive materials [28]. Wang, et al., [28], observing this 

behavior in dense-graded asphalt concrete modified with electrically-conductive materials, 

claimed that such a concave shape is desirable, and that the same principle can be applied for 

two-phase ECAM. In addition to making the curve more concave, adding 5% of GP causes the 

percolation transition and optimum conductive material content to be achieved, compared to 

single-phase ECAM at lower volume dosage rates of CF. Moreover, between 0% and 0.5% 

values of CF volume content, addition of GP causes a huge decrease - virtually 100% - in 

volume resistivity (see Figure 5.3).  

When resistivity values become lower than 1,000 Ω.cm, a CF-based conductive network 

has already been established and the bridging effect [2] cannot further enhance the conductivity 

substantially. The bridging effect - defined as the capability of fibers to form bridges between 

isolated GP clusters to enhance passage of electrons [2] - is more effective when there are fewer 

CFs present in the specimens, e.g., in the range from 0% to 0.5 % CF (see Figure 5.3). Because 

of lack of bridging effect efficiency in the low resistivity region (see Figure 5.3), presence of 5% 

GP in asphalt-based materials is not significantly helpful for self-heating applications, because 

CFs by themselves can result in achieving sufficiently low resistivity values. 

Evaluation of Temperature Effect on Volume Resistivity 

Table 5.3 and Table 5.4 present averaged volume resistivity values at +10°C and -10°C. 

These averaged values are the arithmetic means of the resistivity values measured for each 

asphalt mastic type for the three replicates. Standard error (SE) and relative standard error (RSE) 

values were calculated. RSE is obtained as SE divided by the arithmetic mean and is then 

reported as a percentage quantifying the size of the standard error relative to the averaged 

measurements. Excluding the RSE calculated for single-phase specimen tested at -10°C, the 
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largest RSE values calculated for single-phase ECAM belong to the specimens containing the 

optimum CF content of 0.75%; this can be attributed to the large volume resistivity fluctuations 

within the percolation transition zone [12], [44]. Also, the largest RSE values calculated for the 

two-phase ECAM specimens are associated with the specimen containing the optimum CF 

content of 0.5%, and this again can be attributed to the large resistivity fluctuations within the 

percolation transition zone [12], [44]. The reason for large RSE values in single-phase and two-

phase ECAM specimens containing no CF can be water condensed or ice formed on the surface 

of specimens. As mentioned earlier, presence of condensed water/ice on specimens with high 

resistivity values can influence volume resistivity measurements and when the temperature 

decreases (i.e., from +10°C to -10°C) the amount of condensed/frozen water will increase, 

accounting for even higher RSE values at -10°C. It is worth noting that while the environmental 

chamber equipped with dehumidifying units used in this study decreased the relative RH values, 

these values were still 35% and 10% at +10°C and -10°C, respectively. 

Table 5.3   Measured resistivity values for the specimens modified with CF only. 

CF (Vol %) 

 Resistivity (Ω.cm)  

+10 °C  -10 °C 
Ave SE RSE (%)  Ave SE RSE (%) 

0.00 1.12E+09 2.43E+08 20.9  1.15E+09 3.94E+08 34.4 
0.25 2.73E+07 2.33E+06 8.5  2.46E+07 2.27E+06 9.2 
0.50 2.43E+05 2.80E+03 1.2  2.12E+05 4.42E+03 2.1 
0.75 1.44E+02 3.30E+01 22.9  8.62E+01 2.20E+01 25.5 
1.00 5.85E+01 7.41E-01 2.0  3.75E+01 1.81E+00 4.5 
1.25 2.43E+01 4.55E-01 16.2  1.66E+01 4.61E-01 18.4 
1.50 1.08E+01 3.78E-01 3.5  7.26E+00 2.98E-01 4.1 
1.75 5.85E+00 4.04E-01 9.5  4.62E+00 3.50E-01 10.4 
2.00 3.87E+00 2.29E-01 5.9  3.15E+00 2.28E-01 7.2 
2.25 2.87E+00 8.27E-02 2.9  2.28E+00 1.06E-01 4.7 
2.50 2.50E+00 7.63E-02 3.0  2.05E+00 4.23E-02 2.1 

Note: Ave = Average, SE = Standard Error and RSE = Relative Standard Error. 
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According to Table 5.3 and Table 5.4, except for ECAMs prepared at 0% CF or the 

ECAMs produced at CF contents falling within the percolation transition zone, the RSE values 

are relatively small, confirming the reproducibility capability of ECAM specimens using the 

provided mixing and compaction procedures and following the method utilized for attaching the 

electrodes to ECAM specimens.  

Table 5.4   Measured resistivity values for the specimens modified with both CF and GP. 

CF (Vol %) 

  Resistivity (Ω.cm)  

+10 °C  -10 °C 
Ave SE RSE (%)  Ave SE RSE (%) 

0.00 3.90E+07 1.11E+07 28.4  3.81E+07 1.14E+07 30.0 
0.25 4.55E+05 2.80E+04 6.2  3.92E+05 1.06E+04 2.7 
0.50 8.65E+02 3.04E+02 35.1  5.39E+02 3.01E+02 55.9 
0.75 1.37E+02 2.83E+01 20.6  9.30E+01 1.70E+01 18.3 
1.00 5.30E+01 8.09E+00 15.3  3.57E+01 6.68E+00 18.7 
1.25 1.89E+01 7.16E-01 15.2  1.46E+01 5.96E-01 21.5 
1.50 7.93E+00 2.92E-01 2.6  6.29E+00 4.24E-01 5.4 
1.75 4.54E+00 3.68E-01 8.1  3.78E+00 3.39E-01 9.0 
2.00 3.51E+00 1.84E-01 5.2  2.92E+00 5.50E-02 1.9 
2.25 2.75E+00 1.06E-01 3.9  2.17E+00 5.29E-02 2.4 
2.50 2.28E+00 6.94E-02 3.0  1.91E+00 3.67E-02 2.0 

Note: Ave = Average, SE = Standard Error and RSE = Relative Standard Error. 
 

The electron conduction mechanisms in polymeric materials such as asphalt mastic 

modified with conductive materials depends on [13], [14] (a) the intrinsic conductivity of the 

conductive fillers, (b) the degree of direct contact between conductive fillers, and (c) the 

tunneling/hopping of electrons between the conductive fillers not in contact with one another. 

Tunneling, a quantum-mechanical effect, occurs when electrons pass through an insulating 

material or barrier. In the quantum-mechanical world, unlike in classical physics, electrons 

possess wavelike properties, and these waves taper off quickly rather than merely ending 

abruptly when they encounter a wall or barrier.  It is believed that the distance between 

conductive materials has a very significant influence on electrons’ ability to tunnel [47], [48].  
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Because of the effect of a negative thermal coefficient (NTC), while the resistivity of the 

specimen with no conducting materials increases 2.4% with respect to a 20°C decrease in 

temperature (Figure 5.4), the presence of conducting materials can be a game-changer because 

volumetric contraction of an insulating polymer-based matrix (such as asphalt mastic) enhances 

the continuity of the conducting networks of conducting materials, thereby decreasing the 

volume resistivity [49]. Note that in Figure 5.3 small amounts of conductive materials, such as 

5% GP in a two-phase ECAM at 0% CF content, and 0.25% CF content in a single-phase ECAM 

(with no GP), respectively, cause 2.2% and 10.1% reductions in resistivity values for a 

temperature decrease of 20°C. 

 
Figure 5.4    Reduction in volume resistivity, because of a 20°C reduction in temperature, at 
variable CF contents. 

 
Within the percolation transition zone, electrical conductivity of composite materials is 

dominated by charge tunneling between the conducting materials [50] because the majority of 

conducting material components are not in contact. When such components  become closer due 

to thermal contraction of asphalt mastic, the conductivity is enhanced, and such enhancement 
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may increase the chance of electron “hopping” that is highly dependent on tunneling distance 

[47], [48]. As a result of such decreased tunneling distance, both ECAM specimen types (single-

phase and two-phase) will show improved conductivity as the temperature drops by 20°C. It is 

worth noting that asphalt-based materials exhibit different behaviors at different temperatures 

[33]. Based on the literature, an asphalt-based material’s volume thermal contraction/expansion 

is greatest above its glass transition temperature [51], [52], a temperature at which a thermoset 

polymer such as bitumen transforms from an amorphous rigid state to a more flexible state. 

Within the percolation transition zone, the temperature-related reduction in resistivity increases 

with addition of CF content up to 0.5% and 0.75% (i.e., optimum conductive material contents), 

respectively, in two-phase and single-phase specimens. Such reduction can be explained by 

presence of more conductive material contents and an increased chance of electron tunneling due 

to thermal volume contraction. 

At the optimum level of conductive material contents, the reduction in volume resistivity 

values reach their maximums (see Figure 5.3) for both ECAM specimen types, i.e., a reduction 

of 40.3% and 37.7%, respectively, in resistivity values of single-phase and two-phase specimens. 

Such enhancement in conductivity can be attributed to simultaneous effects of electron tunneling 

and contact resistance conduction mechanisms. It is worth noting that the optimum conductive 

material content occurs at the beginning of formation of many conductive networks in which 

fibers are touching one another in many directions, resulting in enhancement of conductivity 

through contact resistance. As a result of such behavior at the optimum conductive material 

content level, and because of asphalt mastic’s thermal contraction, many fibers can rapidly be 

brought into contact, causing the collective common contact areas to grow; moreover, the chance 
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of electron tunneling can increase, so the reduction in resistivity values will reach a maximum 

value at optimum conductive material contents. 

Note that Figure 5.3 shows that the 20°C temperature reduction causes a greater reduction 

in electrical resistivity in two-phase ECAM specimens at CF contents of 0.25% and 0.5%.  Such 

a substantial reduction in volume resistivity associated with presence of GP particles can be 

explained by the dominance of the bridging effect of CFs caused by thermal contraction when 

there are fewer CFs present in the mastic. However, in the CF content range of 0.75%-1.75%, the 

presence of GP particles makes the two-phase ECAM volume resistivity less susceptible to a 

20°C reduction in temperature compared to that of single-phase ECAM. This feature can be 

useful in increasing accuracy in strain-related self-sensing applications in pavements exposed to 

recurrent thermal variation.  

In the low-resistivity region (see Figure 5.3), at a CF content level equal to or greater than 

1.75% used in both single-phase and two-phase ECAM, the conducting networks are gradually 

saturated with conductive materials [5], resulting in more stable behavior in response to external 

stimuli such as a 20°C temperature decrease. In support of this statement, Jovic, et al., [53] and 

Yi, et al., [54] observed the same behavior in polymer-based materials when they investigated 

the effect of temperature change on volume resistivity of polymer-based materials at high 

conductive material dosage rates. 

Based on the observed behavior of ECAM, i.e., its improved volume resistivity when 

exposed to a temperature reduction of 20°C, it can be concluded that asphalt mastic containing 

conductive fillers such as CF and GP can act as  posistors, materials exhibiting a positive thermal 

coefficient (PTC) effect, within the temperature range -10°C to +10°C. When a material’s 

resistivity decreases with decreased temperatures, it is referred to as a PTC resistor. 
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Resistive heating for de-icing and anti-icing purposes requires a material with high 

electrical conductivity [40], i.e., the ECAM’s volume resistivity must fall within a low resistivity 

region (see Figure 5.3). ECAM design should not be based on optimum conductive material 

content, especially when ECAM binds the aggregates together to produce ECAC, because 

according to Wang, et al., [28], operating close to the percolation transition zone is not 

recommended. For de-icing and anti-icing purposes, since safety and energy efficiency are of 

paramount importance, the percolation transition zone with its intrinsic high rate of resistivity 

change [28] must be avoided in design procedures. Along with basing the design on a low 

resistivity region, the selection of an appropriate conductive material system could also be cost-

saving. For example, this study suggests that the single-phase ECAM modified by 1% CF might 

be a good candidate for resistive heating. First, its CF is still low and, second, addition of GP 

(i.e., switching from a single-phase conductive system to a two-phase conductive system) does 

not substantially improve the resistivity, and addition of GP decreases the resistivity by only 

9.4%. As a result, it was decided to evaluate the heat generation efficiency for single-phase 

ECAM containing 1% CF. 

Evaluation of Heat Generation  

It is worth noting that the heating test was conducted in an environmental chamber set at 

a constant temperature of -18°C, and the surface temperature of ECAM was measured and 

recorded (in the form of radiometric data with the aid of FLIR T650sc IR camera) within a time 

window of 10 minutes. Figure 5.6 presents four frames (thermographs) extracted from the 

recorded radiometric video data. The data was further processed in a ResearchIR Max® software 

environment and only the pixels within the polygon (see Figure 5.6) were selected for further 

analysis. The selected pixels (each pixel represents a data point or temperature) were then 

averaged and reported as a function of time for each ECAM replicate (Figure 5.5). Figure 5.5 
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shows the heat generation performance of single-phase ECAM with a CF volume content of 1%, 

and it was found that the ECAM’s average surface temperature (see Figure 5.6) was increased by 

about 46 °C within 10 minutes.  

The temperature increase rate is variable in different regions of the developed curves 

(Figure 5.5). During the first 30 seconds, the temperature increases at a decreasing rate for each 

replicate; this can be attributed to the lower volume resistivity of ECAM at lower temperatures, 

i.e., the volume resistivity increased in the temperature range -18°C to -10°C. It is worth noting 

that, although the rate of temperature increase is decreasing in the range between -18°C and -

10°C, the fastest temperature increase - considering the average rate - occurs in the first 30 

seconds for all the replicates, an effect that can be attributed to high temperature-susceptibility of 

ECAM during the first 30 seconds. 

 
Figure 5.5   Temperature plot quantifying the heat generation in ECAM specimen’s replicates 
modified with 1% CF. 

 
After 30 seconds, the temperature of each replicate begins to increase at a constant rate 

until it reaches 4.5°C. Such a steady temperature increase can be a result of moderate ECAM 
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temperature susceptibilities in the temperature range -10 to +4.5°C. After 252 seconds (i.e., 4 

minutes and 12 seconds), the temperature increase rate increases because of switching the 

behavior of asphalt-based materials from PTC to NTC at 4.5ºC, i.e., at a “turning point” [55]. 

Wu, et al., [55] who investigated properties of self-sensing ECAC, also observed a PTC behavior 

(i.e., increase in resistivity with increase in temperature) at temperature increases ranging from- 

20 to +25ºC and observed NTC behavior (i.e., decrease of resistivity with increase of 

temperature) at temperature increases ranging from +25 ºC to 70 ºC, so as a result they referred 

to +25 ºC as a turning point. It is worth noting that the reason for observing a lower “turning 

point” in this study can be attributed to absence of an aggregate system in ECAM, because 

aggregates act as a skeleton in decreasing the excessive deformation of asphalt concrete, and 

hence the temperature-related volume resistivity variations, at elevated temperatures, resulted in 

prevention of excessive deformation of ECAM and movement of fibers.  

Presence of randomly-developed warm regions inside the ECAM replicates can account 

for the curve divergences that begin after 252 seconds (or 4.5°C). In these regions, at 

temperatures close to 60°C, bitumen can behave like a Newtonian fluid [56], allowing it to 

become less viscous and provide larger and better contact areas between fibers already in 

contact. It is worth mentioning that none of the ECAM replicates tested at -18°C and subjected to 

the potential difference of 60V deformed within the test duration of 10 minutes. The reason for 

selecting 10 minutes as a time window for performing heating tests is that ECAM containing 1% 

CF started to deform – as was visible by the naked eye – after 12 minutes, so it was decided to 

discard the acquired data after ten minutes to ensure that tests were performed when specimen 

replicates were not deformed. 
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Figure 5.6   Thermographs obtained from an ECAM specimen containing 1% CF: at: (a) 
00:02:30, (b) 00:05:00, (c) 00:07:30 and (d) 00:10:00. 

Figure 5.7 quantifies the uniformity of heat generation presented in Figure 5.6 at different 

times within the time window of 10 minutes. Note that Figure 5.7 also represents data analysis 

conducted in the ResearchIR Max® software environment and only the pixels within the polygon 

(see Figure 5.6) were selected for further analysis. While this analysis is virtually the same as 

that performed when obtaining the graph presented in Figure 5.5, in Figure 5.7, instead of 

drawing temporal graphs, i.e., plots presenting temperature change with respect to time (see 

Figure 5.5), the data analysis results are presented in the form of temperature profile graphs, i.e., 

plots presenting temperature variation within the specimen length. For obtaining the profile 

graphs, the data (i.e., pixels) across the width of polygon were averaged then presented with 

respect to the length of the specimen (or polygon).  
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Figure 5.7   Temperature profiles presenting the uniformity of heat generation within 10 minutes 
along the ECAM specimen containing 1% CF at: (a) 00:02:30, (b) 00:05:00, (c) 00:07:30 and 
(d) 00:10:00. 

According to Figure 5.7, while ECAM profile temperature increases with respect to time, 

there is a decreasing trend in temperatures in proximity to electrodes, and this phenomenon can 

be explained through the Joule Heating law as investigated in another study [57] by the authors 

of this study. ECAM containing 1% CF has higher resistivity, i.e. 5.85E+01 Ω.cm, compared to 

electrodes made of copper whose volume resistivity is approximately 2E-06 Ω.cm. Because of 

such differences between resistivity values, according to the Joule Heating law, the amount of 

heat generated in the electrodes will always be lower than the amount produced in ECAM, 

considering that the current is instantaneously constant within the whole system. As a result, the 

electrodes have a lower temperature than the ECAM. Lower temperatures in electrodes can also 

explain lower temperatures in ECAM in proximity to electrodes by producing a thermal gradient 

- with a high rate of temperature decrease within the narrow area including the electrode, the 

ECAM interface. 
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According to Figure 5.6(a) Figure 5.6 (b), Figure 5.6 (c) and Figure 5.6 (d), obtained, at 

150, 300, 450 and 600 seconds, respectively,  the homogeneity increases with time, and 

enhancement in homogeneity of temperature values obtained on the surface enclosed by the 

polygon (see Figure 5.6) can also be observed in Figure 5.7. Note that in Figure 5.7 the variation 

in temperature profile is largest, as can be proved with the RSE value obtained for the data 

presented in the graph, i.e., -10.7%, and the RSE value decreases with respect to time until it 

reaches the minimum absolute value of 0.9%.  

A thermal camera detects the temperature only on the surface of objects, while the 

conductive network, when formed, is distributed both on the surface and within (inside) the 

specimen. As a result of such distribution, during the beginning of heating test, e.g., during the 

first 2-3 minutes, the conductive paths in regions touching the surface begin to quickly warm up, 

possibly explaining the existence of color heterogeneity, i.e., having warmer regions (see Figure 

5.6). As time passes, heat generated from embedded portions of conductive networks deeper 

inside the specimen begins to transfer through the non-conductive portion of asphalt mastic (i.e., 

HL and bitumen), so that the thermal camera then becomes able to detect the temperature 

increase above the conductive paths, providing a reason for temperature homogeneity to increase 

with respect to time (see Figure 5.6 and Figure 5.7). It is worth noting that presence of 

aggregates in ECAC can change the electrical and thermal properties of ECAM, and that 

aggregates can block conductive paths or make them more tortuous, making the ECAC less 

electrically-conductive compared with ECAM. Moreover, aggregates can increase the thermal 

conductivity and make the temperature distribution more uniform within the ECAC, resulting in 

the potential difference and heating duration for warming up the ECAC possibly being different 

from that observed at laboratory scale in ECAM. Moreover, in the field, performance of ECAC 
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is dependent on environmental conditions such as temperature, wind, snow fall rate, etc., all of 

which can result in changing the amount of voltage applied and the heating duration for reaching 

a target surface temperature value [35].  It is worth mentioning that there is no need for 

temperatures to reach a level exceeding the freezing point of water if the central purpose of an 

electrically-conductive asphalt-based material is just to melt ice and snow. For example, while 

maintaining the surface temperature at 5°C will allow an ice melting process to occur, and an 

ECAM containing 1% CF and starting at -18°C can reach this temperature after 300 s with an 

applied AC voltage of 60V, as mentioned earlier, the presence of aggregates in ECAC can 

influence the performance of ECAM. 

Conclusions 

The objective of this study was to produce single-phase and two-phase electrically-

conductive asphalt mastics (ECAMs) with efficient heat generation capabilities, so that when 

they fill the voids within mineral aggregates, the results are production of anti-icing or de-icing 

electrically-conductive asphalt concretes (ECACs) for heated pavement applications. To this end, 

ECAM specimens were prepared, their volume resistivities measured, and their low-resistivity 

regions identified; moreover, electrical temperature-susceptibility of ECAM specimens was 

investigated. After identifying and analyzing low-resistivity regions for both single-phase and 

two-phase ECAMs, it was decided to investigate heat generation efficiency for only single-phase 

ECAM at a certain of level carbon fiber (CF) content, and at a below-freezing temperatures. The 

results obtained from the heating test showed that single-phase ECAM at the selected CF content 

can generate sufficient heat for anti-icing and deicing purposes. The results of this study led to 

the following specific conclusions: 
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• The optimum CF contents for single-phase and two-phase ECAM were found to be 0.75% 

and 0.5%, respectively, and the presence of 5% GP results in an optimum CF content being 

achieved at a lower volume content of CF, i.e., the optimum CF of single-phase ECAM is 

lower than that of two-phase ECAM. 

•  Presence of GP particles at a volume content of 5% causes a huge reduction in volume 

resistivity when CF contents are low, e.g., 0.25 % and 0.5%. Addition of 5% GP has little 

influence on volume resistivity reduction in the low resistivity region – 0.75 to 2.5% CF 

content – of single-phase ECAM. 

• Addition of very small amounts of conductive materials to asphalt mastic changes its 

behavior from NTC to PTC. For example, in this study, a GP of only 5% or a CF of only 

0.25% in asphalt mastic exposed to a 20°C temperature drop causes reductions in resistivity 

values of 2.2% and 10.1%, respectively.  

• The PTC behavior of ECAM, i.e., reduction in resistivity value due to a temperature 

reduction of 20°C, reaches its maximum value at optimum CF contents of 0.75% and 0.5%, 

respectively, for single-phase and two-phase specimens.  

• All the temperature versus time curves obtained from the ECAM replicates prepared with 

only 1% carbon fiber nearly coincided during the first 4 minutes when the temperature 

increased from -18°C to 4.5°C.  

• While ECAM specimens modified with carbon fiber content of 1% have potential for 

melting ice and snow, the selected volume content of 1% might be changed if the mastic is 

considered as a component of asphalt concrete. 
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CHAPTER 6.    ELECTRICAL AND THERMAL PROPERTIES OF CEMENT PASTE 
AND ASPHALT MASTIC MODIFIED BY ELECTRICALLY-CONDUCTIVE CARBON-

BASED MATERIALS 
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Abstract  

Asphalt mastic and cement paste are matrices filling voids between aggregates in hot mix 

asphalt (HMA) and portland cement concrete (PCC). In this study, asphalt mastic and cement 

paste were modified with carbon fiber (CF) - at variable volume contents - and graphite powder 

(GP) - at a constant volume content - to produce electrically conductive asphalt mastic (ECAM) 

and electrically-conductive cement paste (ECCP) capable of generating heat through resistive 

heating sufficient to increase the temperature in the aggregate systems for anti-icing and de-icing 

purposes. Optimum CF contents were identified and potential temperature-related volume 

resistivity changes studied at CF contents equal to or greater than the optimum value, and heat 

generation efficiency was analyzed by performing active infrared thermography (IRT) for a few 

CF content values equal to or greater than the optimum. Based on the results obtained from 

volume resistivity measurements, it was found that ECCP with higher conductivity has a stable 

electrical behavior when exposed to a temperature change, while ECAM’ volume resistivity 

drops as the temperature decreases. Moreover, the results obtained from conducting active IRT 
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revealed that both ECAM and ECCP are capable of generating heat sufficient for melting 

ice/snow or preventing their formation/accumulation.  

Introduction 

Asphalt mastic is a mixture of asphalt binder and fillers (particles with diameters less 

than 75µm), and cement paste is a mixture of portland cement, water, and possibly chemical 

admixtures. Asphalt mastic and cement paste are matrices binding aggregate system to produce 

hot-mix asphalt (HMA) and portland cement concrete (PCC). There are different types of 

electrically-conductive additives such as powders, fibers, and solid particles that can be added to 

concrete to produce electrically-conductive asphalt concrete (ECAC) [1] or electrically-

conductive portland cement concrete (ECON) [2]. If such conductive additives are powders or 

fibers, it will be the matrix that becomes electrically-conductive and the aggregate system will 

act as either a skeleton or a non-conducting component. Such a matrix in ECAC can be referred 

to as electrically-conductive asphalt mastic (ECAM) and one used in ECON can be referred to as 

electrically-conductive cement paste (ECCP). 

Carbon fibers (CFs) when added to HMA or PCC result in composites with 

multifunctional properties [3]. CF decreases drying shrinkage age and increases flexural strength, 

flexural toughness, tensile strength, and tensile ductility of PCC and simultaneously enhances the 

electrical conductivity of concrete [4]–[7]. Similar to the way it enhances the mechanical and 

electrical properties of PCC, CF, with a melting point of approximately 1000°C, increases tensile 

strength [8], fatigue life [9], and rutting resistance [10] of asphalt concrete, and it is believed that 

CF is the best conductivity enhancement material when used in asphalt concrete [11]. If only a 

single type of conductive powder or fiber is used in HMA or PCC, e.g., only CF, the modified 

matrix, would be referred to as single-phase ECAM or single-phase ECCP [1]. For increasing 
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conductivity, it is also possible to add other conductive material types such as graphite powder 

(GP) to a single-phase system containing CF to produce two-phase ECAM or two-phase ECCP 

[1].   

GP, because of its intrinsic lubricating characteristics, if incorporated beyond a certain 

limit into HMA, approximately 20%, can substantially reduce indirect tensile strength, Marshall 

stability, resilient modulus, and rutting dynamic stability of asphalt concrete [10], [12]. GP has a 

similar effect on PCC [2] because of its hydrophilic nature, like that of portland cement [13]. It 

therefore has a high tendency to absorb water, and if incorporated at a high dosage rate, 20% or 

so, into PCC, it can substantially decrease its compressive strength, e. g., to as low as 2Mpa [14]. 

However, it still seems worthwhile to investigate its influence, at a relatively low volume 

content, on enhancing the conductivity of ECAM and ECCP already modified with CF for self-

heating purposes, i.e., anti-icing and de-icing purposes. It is believed that incorporation of GP 

into HMA and PCC at dosage rates in the range of 3% - 7% does not significantly influence such 

mechanical properties [12], [14].  

Temperature change can influence the volume resistivity of composite materials such as 

ECAM and ECCP. For the first time, Wu, et al., [1] found that changing temperature from 38°C 

to 24°C causes a 12% reduction in resistivity of ECAC produced for self-heating applications. 

They also found that temperature changies from 24°C to 30°C had no influence on the volume 

resistivity of ECAC. Wen, et al. [15], the first to investigate the influence of temperature change 

on volume resistivity of cement paste produced for self-sensing applications, observed increases 

in resistivity of ECCP for temperature decreases occurring in a temperature range of +1°C - 

+45°C. To make an analogous comparison between ECAC and ECON in terms of resistivity-

related temperature susceptibility, it would be better to study the volume resistivity of their 
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matrices (i.e., ECAM and ECCP) under similar test conditions and for identical conductive 

material contents, and, most importantly, when aggregates are not present. 

It is believed that volume resistivity has a reciprocal relationship with temperature 

increase achieved through resistive heating in ECAC. While Liu, et al., [16] proved existence of 

such relationship in self-healing ECAC modified with steel wool at room temperature [16], there 

has been no such investigation relating volume resistivity of electrically-conductive cement-

based materials (i.e., ECCP or ECON) to induced temperature increase achieved through 

resistive heating. As a result, it would be beneficial to compare and identify such relationships 

between self-heating ECCP and self-heating ECAM modified with the same conductive 

materials at the same dosage rates and under the same test conditions.  

The objective of this study was to produce self-heating ECAM and self-heating ECCP so 

that, when they fill the voids in aggregate systems, the result would be concretes with engineered 

anti-icing and de-icing performance for heated pavement applications. To this end, asphalt 

mastic and cement paste reflecting the same dosage rates were modified with CF and GP to 

produce single-phase and two-phase electrically-conductive systems. Volume resistivities were 

measured at a temperature above water freezing temperature, and to investigate temperature 

susceptibility, resistivity measurements only for the specimens containing content equal to or 

greater than optimum CF were repeated at a temperature below that of water freezing. Use of 

active infrared thermography (IRT) to determine heat generation efficiency of ECAM and ECCP 

at certain CF volume contents was then evaluated by measuring temperature increase within a 

certain time window and calculating its rate of increase. 
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Experimental 

Materials 

Asphalt binder (i.e., bitumen), performance grade (PG) 58-28 obtained from Jebro Inc., 

was used together with hydrated lime for preparing ECAM specimens. Thep cement used for 

preparing ECCP specimens was type I/II, a general application cement. The specimens (both 

ECAM and ECCP) were made conductive by using CF and GP obtained from Asbury Carbons 

Inc. The chopped and unsized CF had a carbon content greater than 95% (by mass), length of 3 

mm, diameter of 7.2 microns, and resistivity of 6 × 10-3 Ω.cm. The GP, a flake-type graphite, had 

a specific gravity (SG) of 2.26, carbon content greater than 95% (by mass), and a resistivity 

range of 0.03 Ω.cm – 0.05 Ω.cm [17]. Silver paste, a two-part conductive epoxy with electrical 

resistivity of 7 × 10-2 Ω.cm, was obtained from MG Chemicals®, and used for attaching the 

copper plates (electrodes) to ECCP specimens. 

 
Fabrication of ECAM and ECCP specimens 

Two types of ECAM specimens were prepared: (I) single-phase (containing only CF at 

variable volume dosage rates ranging from 0% to 2.5%), and (II) two-phase (containing GP at a 

constant volume content of 5% and CF at variable volume dosage rates like those for single-

phase). For fabricating ECAM specimens, conductive materials (CF or GP&CF), bitumen, and 

hydrated lime were conditioned for 1 h in an oven set at 165 °C. After the conditioning time was 

over, the components were mixed for 5 m at 60 rpm using a planetary (Hobart) mixer. The 

mixtures were then conditioned once again in the oven, at 165 °C, for 15 m. After the 

conditioning time, the mixtures were hand-compacted in wooden molds, and cured for 24 h in 

room temperature to obtain prismatic beam specimens, with each specimen type having three 
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replicates. After curing time, the ends of specimens were warmed up and copper electrodes 

attached to the tacky warm surfaces ( Figure 6.1a). 

ECPCP specimens comprised of water, portland cement, and conductive materials were 

prepared using the same conductive materials at volume dosage rates identical to those for which 

the ECAM specimens were fabricated. The mixtures had a constant water-to-cement ratio of 0.5, 

and were prepared by mixing the components for 5 m at 60 rpm in a Hobart mixer. After mixing 

time, the fresh pastes were poured into steel molds and consolidated by tamping. The fresh 

specimens were cured in the molds for 24 hours, then demolded and cured in a moist room at 

23°C for 28 days. ECCP specimens were then brought to a dry condition by placing them in an 

oven set at 105°C for 24 h to minimize the influence of moisture and pore solution on the 

volume resistivity of ECCP [18]. It is also widely believed that under dry conditions electronic 

conduction becomes more dominant than ionic conduction in ECCP [18], [19]. The dimensions 

of ECCP specimens were the same as for the ECAM specimens and the copper electrodes were 

attached to the ECCP specimens using silver paste (Figure 6.1b). 

 

Figure 6.1   Electrically-conductive specimens: (a) ECAM and (b) ECCP. 
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Characterization of conductivity and heat generation efficiency 

Conductivity of ECAM and ECCP specimens can be characterized through volume 

resistivity measurements according to Ohm’s law: 

ρ =  𝑅𝑅𝑅𝑅
𝐿𝐿

                                                                                                                                          (1) 
where ρ is electrical volume resistivity (calculated in Ω-cm), R is electrical resistance 

(measured in Ω), S is electrode-specimen contact area (measured in cm2), 2.54 cm × 2.54 cm, 

and L is the distance between electrodes (measured in cm), 20.32 cm. 

The two-probe method [11], [20], a reliable and accurate approach for resistance 

measurement, was utilized in this study, and the reliability and accuracy of this method is 

thoroughly described in the authors’ previous studies [21], [22]. A FLIR DM62 digital 

multimeter and a DC Hipot Tester were used for measuring resistance values below and 

exceeding, respectively, 40 MΩ. It is worth noting that the resistivity measurements were 

conducted using DC current over a very short time (virtually 1 second) to avoid polarization 

[18]. All measurements were performed in an environmental chamber at +10°C (and some 

repeated at -10°C), using copper electrodes (i.e., probes) attached to the specimens (Figure 6.1). 

The environmental chamber was equipped with fans and a dehumidifier unit to ensure a uniform 

temperature distribution and a minimum and constant amount of humidity in the air. Performing 

measurements at two temperatures allowed investigating the temperature susceptibility of self-

heating ECAM and self-heating ECCP when exposed to a temperature decrease of 20°C (i.e., 

from +10°C to -10°C). The reason for referring to ECAM and ECCP as self -heating is that their 

temperature susceptibilities were evaluated at CF contents equal to or greater than optimum to 

enable generation of a sufficient amount of heat through resistive heating. It is worth noting that, 

if CFs are incorporated into the matrices at dosage rates less than the optimum content, the 
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resulting ECAM and ECCP would be suitable for self-sensing applications [18], [23], although 

evaluating temperature susceptibility of such matrices in the context of electrical conductivity is 

beyond the scope of this study. 

To evaluate ice and snow melting capability of the specimens, heat generation efficiency 

of self-heating ECAM and self-heating ECCP specimens was characterized  through active IRT 

measurement [24] at a temperature below water freezing temperature, a novel feature of this 

study. To this end, all the specimens were preconditioned at -20 °C for at least three hours so 

they could achieve thermal equilibrium [25] and an AC voltage of 40 V at a frequency of 64 Hz 

then applied to each specimen for a duration of 4 minutes while the surface temperature of each 

specimen was measured and recorded using a FLIR T650sc camera with a resolution of 640 × 

480 pixels. The acquired radiometric data were then analyzed using the ResearchIR Max® 

software package and heat generation evolution with respect to time.was quantified for each 

specimen  

Results and discussion 

Electrical volume resistivity data analysis 

As can be seen in Figure 6.2, the selected range of CF contents resulted in capturing 

percolative behavior [26]. The curve for two-phase ECAM is less S-shaped compared with the 

one drawn for single-phase ECAM, and it is believed that presence of GP makes the insulator-to-

conductor transition smoother [27]. As was expected, when there are no conductive materials in 

the mastic, e.g., in single-phase ECAM at 0% CF, the volume resistivity is very high, 1.12E+09 

Ω.cm (see Figure 6.2), signifying that asphalt mastic is electrically insulating. 
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Figure 6.2   Volume resistivity as a function of CF content measured for ECAM specimens. 

 
Note that, in Figure 6.2, the volume resistivity drops gradually with addition of CF, 

except for CF dosage rate ranges of 0.25%-0.50% and 0.50%-0.75%, respectively, in two-phase 

and single-phase ECAM specimens. The aforementioned ranges represent percolation transition 

stages at which resistivity values drop at very high rates and in orders of magnitude with addition 

of CFs at very small amounts [26]. For example, the resistivity decreases from 2.73E+07 Ω.cm 

to 2.43E+05 Ω.cm and from 4.55E+05 Ω.cm to 8.65E+02 Ω.cm, respectively, in single-phase 

and two-phase ECAM with addition of only 0.25% CF. For two-phase and single-phase ECAMs, 

respectively, 0.5% and 0.75% CF contents were found to be optimum values of conductive 

materials above which resistivity values do not drop at drastic rates [28]. If the purpose for 

production of ECAM, to fill voids in aggregates to produce ECAC  to achieve an anti-icing and 

deicing pavement surface, its conductive material content should be equal to an optimum or 

greater than optimum content so that it can generate sufficient heat through resistive heating and 

cause the ECAM to behave like a self-heating material [1]. However, it should be kept in mind 
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that factors such as mixture workability and cost also govern the maximum percentage of fibers 

used in ECAC.  

Figure 6.3 presents data gathered from resistivity measurements performed on single-

phase and two-phase ECCP specimens. As expected, the volume resistivity decreases with 

increase in CF content [18] and for the selected range of CF dosage rates percolative behavior 

[26] was captured in ECCP. Compared to asphalt mastic, incorporation of conductive materials 

into cement paste results in the smoother insulator-to-conductor transition that can be easily 

noticed in Figure 6.3. The reason for such smooth behavior, i.e., curves that are not S-shaped 

[29], stems from the fact that cement paste is more conductive than asphalt mastic, e.g., 

according to Figure 6.5, volume resistivity of hardened virgin cement paste is 1.80E+07 Ω.cm, 

two orders of magnitude smaller than for virgin asphalt mastic, 1.12E+09 Ω.cm. Such behavior 

in cement paste (including both single-phase and two-phase ECCP) is comparable with that of 

asphalt mastic having only 5% graphite powder (Figure 6.2) because, unlike single-phase 

ECAM, two-phase ECAM has a smoother insulator-to-conductor transition due to the lower 

resistivity of the mastic containing 5% GP. In other words, having a matrix (such as cement past 

or containing a conductive powder like GP) with higher conductivity results in a smoother 

insulator-to-conductor transition. 
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Figure 6.3   Volume resistivity as a function of CF content measured for ECCP specimens. 

 
Percolation transition zones for both single-phase and two-phase ECCP occur in the CF 

content range 0.0%-0.25%, because resistivity values drop with the highest rates in this range, 

e.g., the volume resistivity of single-phase ECCP drops by as much as 4 orders of magnitude 

(from 1.8E+07 Ω.cm to 1.12E+03 Ω.cm) and that of two-phase ECCP drops by about 3 orders of 

magnitude (from 7.91E+05 Ω.cm to 2.61E+02 Ω.cm). The optimum CF content of both ECCP 

types is 0.25%, because above this volume dosage rate there are no such drastic drops in volume 

resistivity values. As explained for ECAM, if the purpose for ECCP production, to fill the voids 

between aggregates for producing ECON, is for self-heating purposes, its conductive material 

content should be beyond the percolation transition zone, i.e., the CF content should be equal to 

or greater than optimum content [18]. However, here again there are factors such as mixture 

workability and cost that govern the maximum amount of fibers to be used in self-heating 

ECON. 
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As it is seen in Figure 6.2 and Figure 6.3, while presence of 5% GP in the matrix causes a 

huge reduction in volume resistivity in ECAM and ECCP specimens at CF volume contents less 

than optimum for single-phase systems, presence of graphite powder becomes less influential as 

CF content increases (see Figure 6.2 and Figure 6.3). Improved conductivity, because of the 

presence of GP, at low CF dosage rates makes both ECAM and ECCP suitable for self-sensing 

applications [18], [23]. Such substantial influence of graphite powder on reducing volume 

resistivity at low volume dosage rates of CF can be attributed to a bridging effect (Figure 6.4) 

[11]. While this effect reflects the ability of CFs to bridge between remote GP clusters, as the CF 

content increases the bridging influence becomes less and less effective due to saturation of 

matrices (both ECAM and ECCP) with CFs.  

 
Figure 6.4   Bridging effect and its influence on conductivity enhancement. 
 

Figure 6.5 juxtaposes volume resistivity values of single-phase ECAM and single-phase 

ECCP as a function of CF volume content. As explained earlier, the resistivity of ECCP is two 

orders of magnitude smaller than that of ECAM when they are not modified with conductive 
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materials. Addition of a small CF content of 0.25% (i.e., from 0.0% to 0.25%) causes the 

resistivity of single-phase ECCP to drop from 1.80E+07 Ω.cm to 1.12E+03 Ω.cm, a drop of 

virtually four orders of magnitude in single-phase ECCP. However, addition of the same amount 

of CF causes the resistivity of single-phase ECAM to drop by up to virtually two orders of 

magnitude, i.e., from 1.12+E09 Ω.cm to 2.73E+07 Ω.cm. As can easily be observed in Figure 

6.5, while the overall resistivity of single-phase ECCP is less than that of single-phase ECAM at 

variable CF contents, addition of the first 0.25% CF causes a more drastic drop in resistivity of 

single-phase ECCP. This phenomenon can be explained by noting the lower resistivity of cement 

paste compared with asphalt mastic that results in a very large resistivity reduction in single-

phase ECCP when CFs are added in even small amounts. For the same reason, the lower 

conductivity of cement paste can explain occurrence of a percolation transition zone at a lower 

CF content range, from 0.0% to 0.25%, in single-phase ECCP, compared to the percolation 

transition zone in single-phase ECAM that occurs at a 0.5% to 0.75% CF content range (see 

Figure 6.5). Note that in Figure 6.5, with addition of CF, especially for values equal to or greater 

than 0.25%, the differences between resistivity values of single-phase ECAM and single-phase 

ECCP become smaller (Figure 6.5 and Table 6.1), and the smallest difference (or reduction) of 

56% occurs at 2.5% CF. The reason for such behavior can be explained by saturation of matrices 

at higher-volume dosage rates of CF, i.e., the more saturated the matrices the less the influence 

of matrix material on electrical conductivity. 
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Figure 6.5   Volume resistivity of single-phase ECAM and ECCP specimens as a function of CF 
content. 

 
Similar to what was observed in single-phase systems, addition of CF, especially for 

values equal to or greater than 0.25%, decreases the difference between resistivity values of two-

phase ECAM and two-phase ECCP (Figure 6.6 and Table 6.1). According to Table 6.1, the 

measured volume resistivity at 0.25% for two-phase ECCP is about 100% smaller than that for 

two-phase ECAM, and this difference becomes smallest (i.e., 61.86%) at 2.5% CF content, again 

because of saturation of two-phase matrices (ECAM and ECCP) at high volume dosage rates of 

CF. The influence of matrix electrical conductivity therefore becomes less significant as CF 

content increases. 

 



www.manaraa.com

133 
 

 
 

 
 

 

Figure 6.6   Volume resistivity of two-phase ECAM and ECCP specimens as a function of CF 
content. 

Table 6.1   Reduction in resistivity when cement paste matrix is hypothetically replaced with 
asphalt mastic. 

CF Volume 
Content 

Single-phase 
System 

Two-phase 
System 

0.00% 98.39% 98.10% 
0.25% 100.00% 99.94% 
0.50% 99.99% 98.87% 
0.75% 95.74% 96.64% 
1.00% 94.25% 95.49% 
1.25% 89.45% 90.42% 
1.50% 80.88% 79.17% 
1.75% 72.33% 73.19% 
2.00% 63.93% 67.47% 
2.25% 56.09% 65.38% 
2.50% 55.93% 61.86% 

 
Saturation of matrices (both asphalt mastic and cement paste) with CF at high volume 

dosage rates should cause the curves to coincide at 2% or higher CF contents (see Figure 6.5 and 

Figure 6.6), similar to the way curves pertaining to single-phase and two-phase systems 

coincided in Figure 6.2 and Figure 6.3; however, since the curves remain parallel at high dosage 
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rates (Figure 6.5 and Figure 6.6), there must be another reason beyond higher conductivity of 

cement paste compared with that of asphalt mastic. The electron conduction mechanism in 

electrically-insulating matrices such as asphalt mastic and cement paste, in order of dominance, 

depends on [30], [31]: (a) intrinsic conductivity of conductive additives, (b) the degree of direct 

contact of conductive additives, and (c) the hopping of electrons between the conductive 

additives not in direct contact but still at very close proximity. As mentioned earlier in the 

methodology section, the same conductive materials are used in both ECAM and ECCP, so the 

intrinsic conductivity of conductive additives would not be responsible for the difference 

observed in electrical behavior of ECAM and ECCP at high dosage rates of CF. We hypothesize 

that presence of an intrinsic pore structure in cement paste (Figure 6.7b) may cause a major 

portion of CFs to directly come into contact with one another, resulting in improved 

conductivity, while in asphalt mastic such micro-sized pores are scarce, decreasing the 

dominating effect of contact conduction in ECAM and merely encouraging the transmission of 

electrons with the aid of electron hopping/tunneling through thin asphalt films (Figure 6.7a) if 

the films are thin enough. As a result, the resistivity values of ECAM and ECCP at high dosage 

rates of carbon fibers do not coincide (see Figure 6.5 and Figure 6.6), although these matrices are 

already saturated with CFs at high volume contents. 
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Figure 6.7   Visualization of asphalt film and pore influence on degrading and enhancing 
conductivity in: (a) asphalt mastic and (b) cement paste.   
 
Temperature susceptibility evaluation 

With regard to material behavior, increase in resistivity with increase of temperature can 

be described by a positive thermal coefficient (PTC) phenomenon, and decrease in resistivity 

with increase of temperature can be described by a negative thermal coefficient (NTC) 

phenomenon [32]. It would be of paramount importance to study the temperature-related 

electrical behavior of self-heating ECAM and self-heating ECCP at CF contents above the 

percolation transition zone, if the ultimate reason for studying ECAM and ECON is to produce 

concretes suitablefor heated pavement applications. The volume resistivity measurements were 

therefore repeated at -10°C for matrices containing CF contents equal to and greater than 

optimum, to determine PTC/NTC behaviors of self-heating ECAM and self-heating ECCP when 

they are exposed to a thermal change of 20°C – i.e., from -10°C to +10°C (see Figure 6.8, Table 

6.2 and Table 6.3). 

Figure 6.8a and Figure 6.8b, respectively, provide volume resistivity versus CF content 

data for single-phase and two-phase self-heating ECAMs, another novel feature of this research. 
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Note that in Figure 6.8a and Figure 6.8b CF contents of 0.75 and 0.5, respectively, are the 

optimums for single-phase and two-phase systems. As mentioned earlier, these values (i.e., 0.75 

and 0.5) are the minimums for producing a conductive system capable of generating enough heat 

for anti-icing and de-icing purposes, and this can be easily interpreted as implying that ECAM 

acts as a PTC material when exposed to a temperature change of 20°C, i.e., from -10°C to 

+10°C, so it can potentially serve its purpose (anti-icing and de-icing) when it is used in ECAC, 

because its resistivity decreases as the temperature decreases. 

 

Figure 6.8   Temperature influence on volume resistivity of: (a) single-phase ECAM, (b) two-
phase ECAM, (c) single-phase ECCP a, and (d) two-phase ECCP. 
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Table 6.2 presents more detail regarding temperature-related changes in ECAM volume 

resistivity as a function of CF content - all the selected CF contents are equal to or greater than 

the optimum content. According to Table 6.2 and Figure 6.8a, the volume resistivity of single-

phase ECAM containing 0.75% CF, at -10°C, is 8.62E+01 Ω, virtually 60% of its value at +10°C 

(i.e., 1.44E+02 Ω.cm), and the temperature-related difference between the resistivity of single-

phase ECAM decreases with increase in CF content.  Note that in Table 6.2 this difference 

reaches its minimum value at a CF content of 2.5, i.e., the volume resistivity of single-phase 

ECAM containing 2.5% CF at -10°C (i.e., 2.05 Ω.cm) is virtually 82% of its value at +10°C (i.e., 

2.5 Ω.cm).  

Identical behavior was observed in two-phase ECAM (see Table 6.2 and Figure 6.8b). 

The volume resistivity of two-phase ECAM containing 0.5% CF was measured as 5.39E+02 

Ω.cm at -10°C; this measured value is virtually 62% of the result obtained at +10°C, 8.65E+02 

Ω.cm. Again the behavior observed in single-phase ECAM is that the temperature-related 

difference between the resistivity of two-phase ECAM decreases with an increase of CF content.  

According to Table 6.2 and Figure 6.8b, this difference reaches its smallest value at the CF 

content of 2.5, e.g., the volume resistivity of two-phase ECAM containing 2.5% CF at -10°C is 

virtually 84% of its value at +10°C.  The reduction in temperature-susceptibility with respect to 

increase in CF content can potentially assist in the automation of ECAC heated pavement 

systems by reducing temperature-related noise in the acquired data and consequently increase 

system precision when ECAC is produced with high dosage rates of CF. 
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Table 6.2   Volume resistivity of ECAM specimens measured in Ω.cm. 

CF 
Volume  
Content 

Single-phase Two-phase 
-10 +10 -10.0 +10 

Avg. SE Avg. SE Avg. SE Avg. SE 
0.50% NA NA NA NA 5.39E+02 3.01E+02 8.65E+02 3.04E+02 
0.75% 8.62E+01 2.20E+01 1.44E+02 3.30E+01 9.30E+01 1.70E+01 1.37E+02 2.83E+01 
1.00% 3.75E+01 1.81E+00 5.85E+01 7.41E-01 3.57E+01 6.68E+00 5.30E+01 8.09E+00 
1.25% 1.66E+01 4.61E-01 2.43E+01 4.55E-01 1.46E+01 5.96E-01 1.89E+01 7.16E-01 
1.50% 7.26E+00 2.98E-01 1.08E+01 3.78E-01 6.29E+00 9.17E-02 7.93E+00 2.92E-01 
1.75% 4.62E+00 3.50E-01 5.85E+00 4.04E-01 3.78E+00 3.39E-01 4.54E+00 3.68E-01 
2.00% 3.15E+00 2.28E-01 3.87E+00 2.29E-01 2.92E+00 5.50E-02 3.51E+00 1.84E-01 
2.25% 2.28E+00 1.06E-01 2.87E+00 8.27E-02 2.17E+00 5.29E-02 2.75E+00 1.06E-01 
2.50% 2.05E+00 4.23E-02 2.50E+00 7.63E-02 1.91E+00 3.67E-02 2.28E+00 6.94E-02 

 
Unlike the behavior that observed in ECAM, ECCP’s behavior is not significantly 

influenced by a 20°C temperature change (see Figure 6.8c and Figure 6.8d). Table 6.3, 

presenting the gathered data in a tabular format, proves the conclusion drawn from Figure 6.8c 

and Figure 6.8d. , that ECCP proves exhibits insensitivity when exposed to a temperature change 

of 20°C (changing from -10°C to +10°C or vice versa). Such behavior is in contradiction with 

the findings of Wen, et al., [15] who investigated the electrical thermal susceptibility of ECCP at 

low dosage rates of CF for self-sensing applications. According to Wen et al., self-sensing ECCP 

acts as a thermistor, i.e., exhibiting NTC behavior, when exposed to temperature increases above 

0°C. The reason for the discrepancy may stem from the fact that Wen, et al., used CF contents 

below the percolation threshold and conducted their experiments at a temperature range of 1°C- 

45°C, unlike the temperature range of -10°C - +10°C used in this study. Also, according to 

McCarter, et al., [33], portland cement mortar, containing no conductive materials, exhibited 

NTC behavior when exposed to temperature increases above 10°C. Based on the findings of this 

study, it is possible to conclude that having CF contents above the percolation transition zone 

stabilizes the volume resistivity behavior of ECCP when exposed to a 20°C temperature range at 

temperatures close to 0°C. 



www.manaraa.com

139 
 

 
 

 
 

Table 6.3   Volume resistivity of ECCP specimens measured in Ω.cm. 

CF 
Volume  
Content 

Single-phase Two-phase 
-10 +10 -10.0 +10 

Avg. SE Avg. SE Avg. SE Avg. SE 
0.25% 1.13E+03 7.49E+02 1.12E+03 7.40E+02 2.54E+02 7.82E+01 2.61E+02 8.04E+01 
0.50% 1.83E+01 6.66E-01 1.85E+01 6.47E-01 9.86E+00 5.24E-01 9.79E+00 5.33E-01 
0.75% 6.15E+00 2.19E-01 6.15E+00 2.12E-01 4.52E+00 1.25E-01 4.62E+00 1.35E-01 
1.00% 3.33E+00 9.70E-02 3.37E+00 7.99E-02 2.39E+00 1.10E-01 2.39E+00 1.10E-01 
1.25% 2.57E+00 7.99E-02 2.56E+00 8.47E-02 1.83E+00 2.80E-02 1.81E+00 1.83E-02 
1.50% 2.01E+00 6.44E-02 2.07E+00 9.23E-02 1.66E+00 3.82E-02 1.65E+00 3.67E-02 
1.75% 1.63E+00 2.12E-02 1.62E+00 0.00E+00 1.23E+00 7.41E-02 1.22E+00 6.44E-02 
2.00% 1.40E+00 1.83E-02 1.40E+00 1.83E-02 1.12E+00 3.82E-02 1.14E+00 1.83E-02 
2.25% 1.23E+00 2.80E-02 1.26E+00 1.06E-02 9.53E-01 1.83E-02 9.53E-01 1.83E-02 
2.50% 1.07E+00 3.82E-02 1.10E+00 2.80E-02 8.89E-01 1.83E-02 8.68E-01 3.82E-02 

 
Heat generation data analysis 

Recall that the optimum CF content values in single-phase ECAM and two-phase ECAM 

were 0.75% and 0.5%, respectively, and the optimum CF content in both single-phase and two-

phase ECCP was 0.25%. Thus, to support an analogous heating performance comparison 

between ECAM and ECCP, it was decided to perform active thermography on each matrix type 

and conductive system at 0.5%, 0.75%, 1% and 1.25% CF values. The reason for selecting 0.5% 

as the minimum for performing thermography stems from the fact that single-phase and two-

phase ECAMs modified with amounts of CF as low as 0.25% were not capable of generating 

enough heat for the conditions under which the heating tests were performed, i.e., applied 

voltage of 40V and an environmental temperature of -20°C. 

According to Garcia, et al., [28], heat generation has a reciprocal relationship with 

volume resistivity; the lower the resistivity, the higher the heat generation rate and the greater the 

amount of heat generated within a specific time window. Figure 6.9 presents the generated heat – 

in terms of temperature increase within a 4-minute interval for both ECAM conductive systems. 

The resistivity values of single-phase ECAM at 0.5%, 0.75%, 1% and 1.25% CF are, 
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respectively, 2.43E+05 Ω.cm, 1.44E+02 Ω.cm, 5.85E+01 Ω.cm and 2.43E+01 Ω.cm. Since these 

values change in descending order with an increase of CF the hence amount of heat generated 

increases in ascending order. The reason for no heat generated for single-phase ECAM is first 

because of its high resistivity (2.43E+05 Ω.cm) and then because the applied voltage was only 

40V. If the voltage were tripled to 120V, it would be possible to obtain a higher temperature 

value at the 4th minute. It was also possible to extend the test time window beyond 4 minutes so 

that the very slow rate of heat generation for single-phase ECAM at CF content, 0.5%, could 

possibly be compensated for. However, a 4-minute heating time allows a 15°C temperature 

increase in single-phase ECAM modified with 1.25% (see Figure 6.9). Note that in Figure 6.9 

the overall performance of two-phase ECAM, in terms of heat generation, is better than that of 

single-phase because of lower resistivity values of two-phase ECAM (due to presence of GP) at 

CF contents of 0.5%, 0.75%, 1%, and 1.25% that are, respectively, 8.65E+02 Ω.cm, 1.37E+02 

Ω.cm, 5.30E+01 Ω.cm and 1.89E+01 Ω.cm. The volume resistivity of two-phase ECAM at 0.5% 

CF (i.e., 8.65E+02 Ω.cm) is virtually 0.003 of single-phase ECAM volume resistivity at 0.5% 

CF, but still not low enough to enable transmitting enough current for generating sufficient heat 

through resistive heating with an applied voltage of 40V. Since there was a 1°C increase in 

temperature in two-phase ECAM with a volume resistivity of 8.65E+02 Ω.cm, it can be 

hypothetically concluded that the maximum volume resistivity value for generating heat in a 

matrix should be close to 800 Ω.cm if the aim were to heat up the matrix with a voltage of only 

40V at a low temperature such as -20°C (the ambient temperature at which the heating tests were 

performed). 
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Figure 6.9   Averaged surface temperature of ECAM specimens after 4 minutes. 

 
Comparing Figure 6.9 to Figure 6.10, one can easily notice that ECCP is able to produce 

a greater amount of heat within the test duration of 4 minutes. The reason for such behavior is 

again because of the lower resistivity of ECCP compared to that of ECAM due to lower 

resistivity and presence of pores in cement paste.  Similar to ECAM, volume resistivity in ECCP 

has a reciprocal relationship with heat generation rate and the amount of heat produced within a 

selected time window. The resistivity values of single-phase ECCP at 0.5%, 0.75%, 1% and 

1.25% CF are, respectively, 1.85E+01 Ω.cm, 6.15E+00 Ω.cm, 3.37E+00 Ω.cm and 2.56E+00 

Ω.cm.  Like an identical trend observed for ECAM, such ECCP resistivity values changes are in 

descending order with increase of CF, hence the amount of heat generated increases in ascending 

order. The temperature of single-phase ECCP containing 0.5% CF, the minimum CF content 

according to Figure 6.10, increased up to 26°C after 4 minutes with the applied voltage of 40V. 
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The largest amount of selected CF content, 1.2%, helped the single-phase ECCP temperature rise 

up to 124°C.  

 

Figure 6.10   Averaged surface temperature of ECCP specimens after 4 minutes. 

 
Note that in Figure 6.10 the overall performance of two-phase ECCP, in terms of heat 

generation, is better than that of single-phase because of lower resistivity values of two-phase 

ECCP (due to presence of GP) at CF contents of 0.5%, 0.75%, 1% and 1.25% that are, 

respectively, 9.79E+00 Ω.cm, 4.62E+00 Ω.cm, 2.39E+00 Ω.cm and 1.81E+00 Ω.cm. 

Within the test time window of 4 minutes, the applied voltage of 40V caused a moderate 

temperature increase in both single-phase and two-phase ECAM at CF dosage rates of 1% and 

1.25% (see Figure 6.9), while the same voltage of 40V caused a drastic increase in temperature 

for both single-phase and two-phase ECCP modified with the same CF dosage rates of 1% and 

1.25% (see Figure 6.10). The self-heating behavior of ECAM and ECCP can be made more 

comparable, in terms of temperature increase within a certain time window, by applying a higher 

voltage on ECAM and applying a lower voltage on ECCP. The reason for not varying this 



www.manaraa.com

143 
 

 
 

 
 

voltage in this study was because the authors’ aim was to provide equal test condition resulting 

in analogous comparison.  

Fig. 11a and Fig. 11b depict temperature versus time curves for, respectively, single-

phase and two-phase ECAM. The selected CF content for single-phase ECAM and two-phase 

ECAM are, respectively, 1% and 0.75%, both 0.25% more than their identified optimum CF 

contents (see Fig. 1). Selecting CF contents slightly higher than optimum helps in heat 

generation and simultaneously prevents increased cost and degraded workability. Note that in 

Fig. 11a the heating rate is very slow because of the applied voltage of 40V; moreover, the test 

temperature condition of -20°C did not allow heat buildup on the specimen surfaces. It can be 

inferred that the rate of heat generated on the surface of single-phase ECAM containing 1% CF 

is only slightly higher than the amount lost and use of a higher voltage could obviously have 

increased the temperature increase rate. According to Fig. 11b, the average heating rate observed 

in two-phase ECAM is 2.5 °C/minute, virtually twice the value calculated for single-phase 

ECAM, i.e., 1.2°C/minute (see Fig. 11a). The superiority of two-phase ECAM over single-phase 

ECAM can be justified through their measured volume resistivity values, because the resistivity 

of two-phase ECAM is 5.30E+01 Ω.cm, virtually one-third of the value measured for single-

phase ECAM, 1.44E+02 Ω.cm, so it can be concluded that the lower the resistivity the higher the 

rate of temperature increase in ECAM; it is worth noting that the same trend was observed in 

other ECAM specimens at different CF dosage rates, i.e., resistivity had a reciprocal relationship 

with the rate of temperature increase. 

Fig. 11c and Fig. 11d depict temperature versus time curves obtained from, respectively, 

single-phase and two-phase ECCP. The selected CF content for both single-phase and two-phase 

ECCP is 0.5%, 0.25% more than their optimum CF contents (see Fig. 2). The heating rate of 
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single-phase ECCP is 6.4°C/minute and that of two-phase ECCP is 11°C/minute, about twice the 

rate measured for single-phase ECCP. The reason for such behavior is again due to the lower 

resistivity of two-phase ECCP, 9.79E+00 Ω.cm, half the value calculated for single-phase ECCP 

that, 1.85E+01 Ω.cm. In a similar way to that observed for ECAM, it can be concluded that the 

lower the resistivity of ECCP the higher the temperature rate increase. 

 
Figure 6.11   Temperature plot quantifying the heat generation in: (a) single-phase ECAM at 1% 
CF, (b) two-phase ECAM at 0.75% CF, (c) single-phase ECCP at 0.5% CF, and (d) two-phase 
ECCP at 0.5% CF. 
 

Based on the conclusions drawn from Fig. 11, it can be stated that, to increase the heating 

rate in a matrix (ECAM or ECCP), the resistivity should be decreased. It is also worth noting that 

for melting ice/snow or curbing their formation/accumulation on the surface of a pavement 

paved with ECAC or ECON, it would be sufficient only to increase/keep the temperature to/at a 

temperature a few degrees Celsius above the freezing temperature point of water, i.e., about 3°C. 

Depending on the type of matrix (ECAM or ECCP) used for binding the aggregate together to 
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produce an electrically-conductive concrete (i.e., ECAC or ECON), one can arrive at an efficient 

mix design to produce a heated pavement system having efficient anti-icing and de-icing 

capabilities. For such design, there are a few factors that should be taken into account, including 

field ambient temperature history during the cold seasons of the year, the applied voltage, the 

matrix type, and the intended melting duration of ice or snow, especially for deicing purposes. 

Fig.12 provides thermographs obtained from both single-phase and two-phase matrices 

(ECAM and ECCP) tdhat provide a more tangible understanding of heating performance of these 

matrices after 4 minutes of being exposed to an electrical potential difference of 40V.  

 

Figure 6.12   Thermographs obtained at 4th minute from: (a) single-phase ECAM at 1% CF, (b) 
two-phase ECAM at 0.75% CF, (c) single-phase ECCP at 0.5% CF, and (d) two-phase ECCP at 
0.5% CF. 
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Findings and conclusions 

The objective of this study was to produce electrically-conductive asphalt mastic 

(ECAM) and electrically-conductive cement paste (ECCP) so that when they fill the voids in an 

aggregate system the result would be either a highly-efficient electrically-conductive asphalt 

concrete (ECAC) or a highly-efficient electrically-conductive portland cement concrete (ECON) 

with application in heated pavement systems to anti-icing and deicing purposes. To this end, 

single-phase and two-phase matrices (both ECAM and ECCP) were prepared by modifying 

asphalt mastic and cement paste with addition of carbon fiber (CF) at variable contents and 

adding graphite powder (GP) at constant content. Volume resistivity of single-phase (containing 

only CF) and two-phase (containing CF and GP) matrices were measured at different CF 

contents. The optimum values of CF content were identified, and the influence of temperature 

change on volume resistivity of each matrix type was investigated for a few selected CF content 

values, i.e., optimum CF content value and a few CF content values above the optimum. The 

amount of temperature increase, i.e., heating efficiency, was measured and evaluated by 

performing active infrared thermography (IRT) at a below-freezing temperature for each matrix 

type modified with CF and GP for the aforementioned selected CF contents; moreover, the rate 

of temperature increase was calculated for each matrix type containing CF at a content slightly 

higher than optimum. Based on IRT results, it was shown that each matrix type is capable of 

generating heat, and this heat generation can be adjusted based on the design resistivity and the 

matrix type used. All the efforts in this study lead to the following outcomes: 

• The optimum CF contents obtained for single-phase ECAM and two-phase ECAM were 

0.75% and 0.5%, respectively, and for both single-phase ECCP and two-phase ECCP was 

0.25%. The reason for obtaining the optimum CF at a lower value in ECCP stems from the 
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fact that volume resistivity of cement paste is two orders of magnitude smaller than that of 

asphalt mastic. 

• Addition of GP to ECAM resulted in a much smoother insulator-to-conductor transition 

compared with the transition observed in ECCP. While presence of 5% graphite powder in 

the matrix causes a huge reduction in volume resistivity of ECAM and ECCP at CF 

volume contents less than the optimum identified for single-phase systems, presence of 

graphite powder becomes less influential as CF content increases and this is attributed to 

saturation of matrices at such high dosage rates dwarfing conductivity enhancement due to 

a bridging effect. 

• Compared with asphalt mastic, incorporation of conductive materials into cement paste 

results in a smoother insulator-to-conductor transition. The reason for such smooth 

behavior, curves that are not S-shaped, stems from the fact that cement paste is two orders 

of magnitude more conductive than asphalt mastic. 

• It was expected that, due to saturation of matrices (both asphalt mastic and cement paste), 

in CFs at high dosage rates, their volume resistivities become identical; however, due to 

presence of micro-structured pores in cement paste many CFs are in direct contact at high 

dosage rates while relative absence of a uniformly distributed pore structure in asphalt 

mastic matrix results in a smaller probability of fiber-fiber contact and such direct contact 

is usually interrupted by a very thin asphalt film. As a result, it would be possible to 

decrease the difference between the volume resistivities of ECAM and ECCP by 

saturation of the matrices with CF, but impossible to make their volume resistivity values 

identical to the high dosage rates of CF. 
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• When exposed to a temperature drop of 20°C the volume resistivity of self-heating ECAM 

(both single-phase and two-phase), at CF dosage rates above the optimum, dropped 

considerably while such a systematic tangible change was not observed in self-heating 

ECCP when exposed to the same temperature change at CF content equal to or greater 

than optimum. Such temperature susceptibility ensures enhanced heating performance of 

self-heating ECAM at lower temperatures, and it can be concluded that self-heating ECCP 

– containing high dosage rates of CF – is more stable in terms of volume resistivity when 

exposed to a temperature change of 20°C. 

• If the purpose for production of ECAM and ECCP, to fill the voids in aggregates for 

producing ECAC and ECON, is for the purpose of achieving an anti-icing and deicing 

pavement surface, their conductive material contents should be equal to or greater than 

optimum content so that these matrices can generate enough heat through resistive heating 

to let ECAM and ECCP behave as self-heating materials. 

• Heat generation has a reciprocal relationship with volume resistivity in both ECAM and 

ECCP; the lower the resistivity, the higher the heat generation rate and the greater the 

value of heat generated within a specific time window. 

• In addition to matrix type and conductive material content, the energy conditioning of 

ECAM and ECCP such as applied voltage and test duration can influence heating 

performance. For example, it would be possible to increase the voltage for a matrix with 

lower resistivity and lower CF content, but still higher than optimum, to compensate for 

slow rate of temperature increase or within a selected time window. It also would be 

possible to extend the heating duration to compensate for lower temperature-increase rates 

and obtain higher temperatures at durations beyond 18 minutes.   
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CHAPTER 7.    CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

Summary 

The goal of this study was to produce nano-engineered heated pavement systems 

(both flexible and rigid) for ice-and snow-free pavement applications. To this end, first the 

feasibility of producing nano-based superhydrophobic (super water-repellent) hot mix asphalt 

(HMA) and superhydrophobic portland cement concrete (PCC) with potential ice-repellent 

characteristics was investigated. Then the possibility of producing electrically conductive 

asphalt mastic (ECAM) and electrically-conductive cement paste (ECCP) was thoroughly 

studied to make sure that when either of these matrices (both ECAM and ECCP) bind an 

aggregate system together, the result would be either an electrically-conductive asphalt 

concrete (ECAC) or an electrically conductive portland cement concrete (ECON) that could 

efficiently melt ice/snow or prevent/curb their formation/accumulation.  

For producing superhydrophobic HMA and PCC, a layer-by-layer (LBL) spray-

deposition technique was developed and used for spraying fluorine or silane-based low 

surface energy materials on HMA and PCC surfaces to produce hierarchical water-repellent 

nano-based coatings; water repellency of these spray-coated surfaces was then characterized 

through static water contact angle measurements. Works of adhesion also were calculated 

based on the measured static water contact angles. After confirming the water-repellency of 

these surfaces with respect to potential ice-repellent characteristics, their skid resistance was 

evaluated by measurement of friction coefficients or determination of British pendulum 

numbers. 
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ECAM and ECCP were fabricated by incorporation of carbon-based electrically-

conductive materials into either asphalt mastic or cement paste. Optimum conductive 

material contents and the conductive material dosage rates suitable for anti-icing and deicing 

purposes were identified through characterization of both ECAM and ECCP volume 

resistivities. The electrical temperature-susceptibility of ECAM and ECCP was evaluated to 

ensure that these matrices can generate enough heat when they are used in ECAC and ECON 

implemented in the field. Heat generation efficiency of these electrically-conductive matrices 

was then characterized by performing active infrared thermography (IRT) at below-freezing 

temperatures. 

The research presented in this dissertation has led to multiple novel findings and 

innovations. In each chapter of this study, i.e., Chapters 1 through 6, a new finding, a new 

product or a new application of a material/method has been provided. Some of the main 

contributions of this research are: 

• Proving the feasibility of using a LBL spray deposition technique for coating asphalt 

concrete and portland cement concrete surfaces with low surface energy materials. 

• Demonstrating the effectiveness of fluorine-based and silane-based low surface 

energy materials for producing superhydrophobic coatings, with hierarchical 

roughness, on HMA and PCC surfaces. 

• Enhancing skid-resistant superhydrophobic PCC by texturizing the surface of fresh 

concrete before coating the hardened concrete surfaces using an LBL method. 

• Proving the efficiency of carbon-based electrically conductive materials such as CF 

and GP for enhancing the electrical conductivity of ECAM and ECCP. 
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• Discovering the electrical temperature-susceptibility of ECAM and demonstrating the 

improvement in ECAM electrical conductivity at lower temperatures. 

• Investigating the heating efficiency of ECAM and ECCP at below-freezing 

temperatures, and comparing the heating performance of the matrices when exposed 

to the same electrical potential difference. 

 

It is hoped that the findings of this study will contribute to production of hybrid 

heated pavement systems (i.e., pavement systems in which ice-repellent coating technology 

is merged with ECAM and/or ECON technology) for accelerating the ice/snow melting 

process or preventing accumulation of snow or formation of ice in critical areas such as 

airfield pavements, bridge decks, etc. where achieving ice-and snow-free surfaces is of 

paramount importance. 

Conclusions 

The following conclusions present the major findings of this study for helping 

achieve the goal of this research. 

Superhydrophobic Coatings on Asphalt Concrete Surfaces: Toward Smart Solutions 
for Winter Pavement Maintenance 

Superhydrophobic coated HMA surfaces were created, characterized, and evaluated. 

The layer by layer (LBL) method and the micro-tribometer based coefficient of friction 

measuring method were employed to create superhydrophobic coatings and to characterize 

skid resistance of superhydrophobic coated substrates at micro-texture level. A statistical 

design based experimental test program was developed and conducted to evaluate the effect 



www.manaraa.com

156 
 

 
 

 
 

of different test variables, including spray times and dosage rates of PTFE. The major 

conclusions drawn from test procedures and results are summarized below:  

 
• Using LBL method for spray depositing the PTFE particles seems to be a 

promising method for achieving ice-repellent surfaces having potential for 

mitigating problems associated with ice accretion or snow accumulation on 

the roadways or airfield areas paved with nano-coated asphalt concrete. 

• The micro-tribometer-based coefficient of friction method designed and 

demonstrated in this study can be a promising method for characterizing skid 

resistance of nano-coated asphalt concrete at micro-texture level.   

• Spray time is a significant factor affecting superhydrophobicity. Increasing the 

spray duration from 3 seconds to 6 seconds resulted in achieving contact 

angles greater than 150°, and at other spray times of 9 and 12 seconds, the 

superhydrophobicity still remained, even though super water-repellency did 

not uniformly increase for all of the specimens after 6 seconds. Increasing the 

amount of PTFE up to a certain level in nano-coating of asphalt concrete can 

also increase ice/snow repellency. Above that level, adding to the deposition 

amount of PTFE becomes uneconomical and does not significantly increase 

superhydrophobicity. 

• In a manner similar to superhydrophobicity, spray time had a significant 

influence on the coefficient of friction. While increasing the spray time from 3 

seconds to 6 seconds drastically increased skid resistance on the asphalt 

concrete samples, when PTFE is sprayed on epoxy in the field, it should be 
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kept in mind that if sufficient spraying deposition duration is not allowed, the 

epoxy not covered with PTFE could slightly decrease the skid resistance over 

the roadway/runway. 

• In the context of micro-texture, PTFE results in obtaining comparable or even 

higher skid resistance measured on the nano-coated asphalt concrete at 6-

second spray time for all PTFE dosages. If the spray time and dosage of PTFE 

are wisely selected, nano-coated pavements can provide high coefficients of 

friction at low speeds. 

• In the context of macro-texture, the main contributors to improving skid 

resistance are shape, distribution, and angularities of the coarse aggregate 

present in the asphalt concrete. In other words, the physical properties of 

aggregate and their distribution should be the main concern in pavements 

coated at high speed with the super-ice/water repellent nanomaterials like 

PTFE. This issue is recommended for further study to implement the use of 

superhydrophobic coatings in actual snow and ice removal strategies for 

flexible pavement systems.  

Superhydrophobic Coatings on Portland Cement Concrete Surfaces 

The feasibility of producing super water/ice-repellent portland cement concrete was 

investigated in an laboratory environment. The LBL spray deposition technique was utilized 

for producing three different nano-based superhydrophobic coatings on concrete surfaces. A 

statistical design-based experimental test program was conducted on the measured responses 

(i.e., WCAs) to evaluate the effect of different test variables, including spray durations and 

coating types. A British pendulum tester was used for investigating the influence of different 
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concrete surface textures on enhancing the skid resistance of the surfaces coated with the 

most wear-resistant coating. The efforts made in this study led to the following conclusions: 

 

• Low surface energy materials like PTFE, PEEK and silanized DE can help achieve 

water/ice-repellent surfaces with potential for mitigating winter maintenance issues 

on roadways and airfield areas paved with PCC. 

• The Layer-by-layer (LBL) spray deposition technique was for the first time utilized to 

create superhydrophobic PCC for ice-and snow-free rigid pavement applications. The 

detailed procedure has been clearly documented in a step-by-step manner so that the 

researchers and practitioners can study and implement this technology.    

• Spray duration significantly affects the superhydrophobicity. The WCA increased for 

all the specimens except for those coated with PTFE with the spray interval 

increasing from 4 to 10 seconds. The specimens coated with PTFE showed the same 

trend for intervals of 4 to 8 seconds, indicating that this type of coating reaches its 

best performance at the spray duration of 8 seconds among the spray durations 

selected for this study. 

• Similar to the spray duration, the type of low surface energy material selected had an 

important impact on the degree of hydrophobicity. Within a spray duration range of 

4-8 seconds, the PCC specimens coated with silanized DE were the most 

superhydrophobic, followed by the PTFE. The 4-second spray deposition of 

PTFE/PEEK resulted in obtaining an overhydrophobic, but not superhydrophobic, 

surface, although for this type of coating all other spray durations resulted in 

obtaining superhydrophobic PCC specimens. The silanized DE reached an excellent 
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degree of superhydrophobicity with a measured WCA greater than 160° at a spray 

duration of 10 seconds. This is the first time that a superhydrophobic PCC with such a 

high degree of superhydrophobicity has been engineered. 

• Texturizing the surface of PCC can considerably enhance the skid resistance of super 

water/ice-repellent rigid pavements. Transverse turf drag texture and transverse and 

longitudinal-tined surface are good candidates for enhancing the skid resistance of 

superhydrophobic rigid pavements. 

Electrically-conductive Asphalt Mastic: Temperature Dependence and Heating 
Efficiency 

Single-phase and two-phase electrically-conductive asphalt mastics (ECAMs) were 

fabricated with efficient heat generation capabilities, so that when they fill the voids within 

mineral aggregates, the results produce anti-icing or de-icing electrically-conductive asphalt 

concretes (ECACs) for heated pavement applications. To this end, ECAM specimens were 

prepared, their volume resistivities measured, and their low-resistivity regions identified; 

moreover, electrical temperature-susceptibility of ECAM specimens was investigated. After 

identifying and analyzing low-resistivity regions for both single-phase and two-phase 

ECAMs, it was decided to investigate heat generation efficiency only for single-phase 

ECAM at a certain of level carbon fiber (CF) content, and at a below-freezing temperature. 

Based on the results obtained from the heating test, it was found that single-phase ECAM at 

the selected CF content can generate enough heat for anti-icing and deicing purposes. The 

results of this study led to the following conclusions: 
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• The optimum CF content values for single-phase and two-phase ECAM were found to 

be 0.75% and 0.5%, respectively, and the presence of 5% GP results in an optimum CF 

content at a lower volume content of CF, i.e., the optimum CF of single-phase ECAM 

is lower than that for two-phase ECAM. 

•  Presence of GP particles at a volume content of 5% causes a huge reduction in volume 

resistivity when CF content is low, e.g., 0.25 % and 0.5%. Addition of 5% GP has little 

influence on volume resistivity reduction in the low resistivity region, 0.75 to 2.5% CF 

content, of single-phase ECAM. 

• Addition of very small amounts of conductive materials to asphalt mastic changes its 

behavior from NTC to PTC. For example, in this study contents of only 5% (GP) or 

0.25% (CF) in asphalt mastic, exposed to a 20°C temperature drop, caused reductions 

in resistivity values by 2.2% and 10.1%, respectively.  

• The PTC behavior of ECAM, i.e., reduction in resistivity value due to a temperature 

reduction of 20°C, reaches its maximum value at optimum CF contents of 0.75% and 

0.5%, respectively, for single-phase and two-phase specimens.  

• All the temperature versus time curves obtained from the ECAM replicates prepared 

with only 1% carbon fiber nearly coincided during the first 4 minutes after the 

temperature was increased from -18°C to 4.5°C.  

• While ECAM specimens modified with carbon fiber content of 1% have potential for 

melting ice and snow, the selected volume content of 1% might be changed if the 

mastic is considered to be a component of asphalt concrete. 
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Electrical and Thermal Properties of Cement Paste and Asphalt Mastic Modified by 
Electrically-conductive Carbon-based Materials 

Electrically-conductive asphalt mastic (ECAM) and electrically-conductive cement 

paste (ECCP) were fabricated in a laboratory environment, and it was expected that when 

they filled the voids in an aggregate system the result would be a highly efficient electrically-

conductive asphalt concrete (ECAC) or a highly efficient electrically-conductive portland 

cement concrete (ECON) with applications in heated pavement systems for anti-icing and 

deicing purposes. To this end, single-phase and two-phase matrices (both ECAM and ECCP) 

were prepared by modifying asphalt mastic and cement paste with addition of carbon fiber 

(CF) at variable contents and adding graphite powder (GP) at a constant content. Volume 

resistivity of single-phase (containing only CF) and two-phase (containing CF and GP) 

matrices were measured at different CF contents. The optimum CF contents were identified, 

and the influence of temperature change on volume resistivity of each matrix type was 

investigated for a few selected CF contents, i.e., optimum CF content and a few CF contents 

above the optimum. The amount of temperature increase, i.e., heating efficiency, was 

measured and evaluated by performing active infrared thermography (IRT) at a below-

freezing temperature for each matrix type modified with CF and GP at the aforementioned 

selected CF contents; moreover, the rate of temperature increase was calculated for each 

matrix type containing CF at a content slightly higher than optimum. Based on the IRT 

results, it was revealed that each matrix type is capable of generating heat, and this heat 

generation can be adjusted based on the design resistivity and the matrix type used. All the 

efforts in this study lead to the following outcomes: 
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• The optimum CF contents obtained for single-phase ECAM and two-phase ECAM 

were 0.75% and 0.5% respectively, and that obtained for both single-phase ECCP and 

two-phase ECCP was 0.25%. The reason for the lower optimum CF in ECCP stems 

from the fact that volume resistivity of cement paste is two orders of magnitude 

smaller than that of asphalt mastic. 

• Addition of GP to ECAM resulted in a much smoother insulator-to-conductor 

transition compared to the transition observed in ECCP because of addition of GP. 

Presence of 5% graphite powder in the matrix causes a huge reduction in volume 

resistivity of ECAM and ECCP at CF volume content less than the optimum identified 

for single-phase systems. However, presence of graphite powder becomes less 

influential as CF content increases, and this is attributed to saturation of matrices at 

such high dosage rates dwarfing the conductivity enhancement due to bridging effects. 

• Compared with asphalt mastic, incorporation of conductive materials into cement 

paste results in a smoother insulator-to-conductor transition. The reason for such 

smooth behavior, curves which are not S-shaped, stems from the fact that cement paste 

is two orders of magnitude more conductive than asphalt mastic. 

• It was expected that, due to saturation of matrices (both asphalt mastic and cement 

paste) for CFs at high dosage rates, their volume resistivities become identical; 

however, due to presence of micro-structured pores in cement paste, many CFs are in 

direct contact at high dosage rates, while the absence of a uniformly distributed pore 

structure results in a smaller probability of fiber-fiber contact in asphalt mastic matrix, 

and such direct contact is usually interrupted by a very thin asphalt film. As a result, 

while it is possible to decrease the difference between the volume resistivities of 
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ECAM and ECCP by saturation of the matrices with CF, it is impossible to make their 

volume resistivity values identical at high dosage rates of CF. 

• When exposed to a temperature drop of 20°C the volume resistivity of self-heating 

ECAM (both single-phase and two-phase), at CF dosage rates above the optimum, 

dropped considerably while such systematic tangible change was not observed in self-

heating ECCP at CF content greater than optimum when exposed to the same 

temperature change. Such temperature susceptibility ensures enhanced heating 

performance of self-heating ECAM at lower temperatures, and it can be concluded that 

self-heating ECCP containing high dosage rates of CF is more stable in terms of 

volume resistivity when exposed to a temperature change of 20°C. 

• If the purpose for production of ECAM and ECCP, filling the voids in aggregates to 

produce ECAC and ECON, is to achieve an anti-icing and deicing pavement surface, 

their conductive material contents should be equal to optimum or greater than 

optimum content so that these matrices can generate sufficient heat through resistive 

heating and let the ECAM and ECCP behave like self-heating materials. 

• Heat generation has a reciprocal relationship with volume resistivity in both ECAM 

and ECCP; the lower the resistivity, the higher the heat generation rate and the greater 

the value of heat generated within a specific time window. 

• In addition to the matrix type and conductive material content, the energy conditioning 

of ECAM and ECCP, such as applied voltage and test duration, can influence the 

heating performance. For example, it would be possible to increase the voltage for a 

matrix with lower resistivity and lower CF content, but still higher than optimum, to 

compensate for a  slow rate of temperature increase or within a selected time window. 



www.manaraa.com

164 
 

 
 

 
 

It also would be possible to extend the heating duration to compensate for lower 

temperature increase rates and obtain higher temperatures at durations beyond 18 

minutes.   

Recommendations for Future Studies 

In addition to the conclusions drawn in this study, some recommendations will be 

presented, and it is hoped that they can help establish milestones for future studies. 

Superhydrophobic Coatings on Asphalt Concrete Surfaces: Toward Smart Solutions  

Contact angle and friction coefficient measurements were all performed at ambient 

temperature. Since flexible pavements coated with superhydrophobic PTFE must curb the 

formation of ice/snow in cold climatic conditions, it is recommended to perform these tests 

again at lower temperatures. In this way the effect of temperature on spray deposition, 

water/ice repellency, and skid resistance can be determined.   

Superhydrophobic Coatings on Portland Cement Concrete Surfaces 

There is a huge number of different types of water-repellent materials and spray 

deposition techniques that should be investigated in further studies related to finding smart 

solutions for winter pavement maintenance. Although, according to the reported literature, 

superhydrophobicity leads to ice-repellency, it is recommended that the force required to 

detach the ice from the surface of superhydrophobic concrete be directly measured to 

determine whether any ice will attach to this type of concrete. Another issue that needs 

investigation is the durability of nano-coatings on paved areas; there is a need for producing 

a standard test setup for measuring the wear resistance of these coatings on PCC surfaces. 

After performing this investigation, the appropriate materials resulting in the most 

economical approach should be utilized for spray deposition on PCC surfaces. Producing 
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superhydrophobic concrete is all about achieving a balance between cost and performance, 

i.e., one should decide between either increased lifespan and increased cost, or decreased 

lifespan and lower cost. It is also possible to nano-treat the surface of heated PCC pavements, 

then investigate the combined effect of these technologies on removing ice and snow. 

 

Electrically-conductive Asphalt Mastic: Temperature Dependence and Heating 
Efficiency 

Because presence of aggregates can change the electrical properties of ECAM, the 

findings of this study could be used for producing ECAC allowing the influence of the 

aggregate system on changes in ECAM electrical properties to be investigated. Moreover, 

different aggregate types have different thermal coefficients, so there is a need to find the 

best type with respect to improving the PTC effect of ECAM by further reducing the energy 

consumption of ECAC. The authors will also investigate electromagnetic interference 

shielding of ECAM at different volume dosage rates of CF, because electrically conductive 

materials are capable of reflecting radiation, suggesting applications for protection of 

transformers and electronic devices housed in underground concrete vaults.  

Electrical and Thermal Properties of Cement Paste and Asphalt Mastic Modified by 
Electrically-conductive Carbon-based Materials 

Aggregates can also alter the properties of ECAM and ECCP, so the findings of this 

study should be used for producing ECAC and ECON, and then investigating the influence 

of different aggregate types on changing the thermal and electrical properties of these types 

of concrete. Since PCC (because of the intrinsic hydrophilic property of portland cement) can 

absorb more water than HMA (because of the intrinsic hydrophobic property of bitumen), it 



www.manaraa.com

166 
 

 
 

 
 

would be necessary to compare their heating performance at different degrees of saturation 

so that a more robust conclusion can be drawn. 
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